A guide to Post-Primary statistical inference

Strand 1 Section 1.7 lists learning outcomes related to statistical inference which deals with the principles involved in generalising observations from a sample to the whole population. Such generalisations are valid only if the data are representative of that larger group.

A representative sample is one in which the relevant characteristics of the sample members are generally the same as those of the population.

An improper or biased sample tends to systematically favour certain outcomes and can produce misleading results and erroneous conclusions.

Randon sampling is a way to remove bias in sample selection, and tends to produce representative samples. At JC HL and all levels at LC, students are required to

- recognise how sampling variability influences the use of sample information to make statements about the population

Whilst LC HL students are required to go beyond this and

- use simulations to explore the variability of sample statistics from a known population, to construct sampling distributions and to draw conclusions about the sampling distribution of the mean

At JC HL, and LC FL and LCOL, students should experience the consequences of non-random selection and develop a basic understanding of the principles involved in random selection procedures. At LC HL, learners extend this understanding; they explore simulations that produce frequency distributions of sample means and conclude from these explorations that when we take a large number of random samples of the same size and get a frequency distribution of the sample means, this distribution - called the sampling distribution of the mean - tends to become a normal distribution and

- If the sample size is large ($n \geq 30$) then for any population, no matter what its distribution, the sampling distribution of the mean will be approximately normal
- This normal distribution will have a mean equal to the population mean with standard deviation $\frac{\sigma}{\sqrt{n}}$. This is calld the standard error of the mean.

Suppose a group of students was investigating the sporting preferences of students in their school.
At JC FL and JC OL, students might survey the whole class; students at this level are not required to look beyond the data and no generalisation is required. At JC HL and at all levels at LC, students begin to acknowledge that it is possible to look beyond the data. They would gather data from a sample and generalise to a larger group. In order to be able to generalise to all students at the school a representative sample of students from the school is needed. This can be done by selecting a simple random sample of students from the school.

At each of the levels $J \mathbf{C H L}, \mathbf{L C} F L, L C O L$ and $\mathbf{L C} \mathbf{H L}$, students are required to deal with sampling variability in increasingly sophisticated ways.

Consider the data below gathered from a simple random sample of 50 students.

		Do You Like Soccer?		Row Total
Do You like Rugby?	Yes	No		
	Yes	25	4	29
	No	6	15	21

Suppose, before the study began, a teacher hypothesised: I think that more than 50% of students in this school like Rugby. Because $58 \%\left(\frac{29}{50}=58 \%\right)$ of the sample like rugby there is evidence to support the teachers claim. However, because we have only a sample of 50 students, it is possible that 50% of all the students like rugby but the variation due to random sampling might produce 58% or even more who like rugby.The statistical question, then, is whether the sample result of 58% is reasonable from the variation we expect to occur when selecting a random sample from a population with 50% successes? Or, in simple terms, What is a possible value for the true population proportion based on the sample evidence?

At JCHL and LCFL it is sufficient for students to acknowledge sampling variability; a typical response at this level would bealthough 58% of this sample reported that they like rugby, it is possible that a larger or smaller proportion would like rugby if a different sample was chosen. 58% is close to 50% and it is possible that 50% of all the students like rugby.... At this level, the acknowledgement of variability is more evident in the planning stage with students deciding to choose a large sample or perhaps several small samples and average the findings in order to reduce the sampling error. [If this cohort were deaing with numerical data and were looking for a set of posible values for the population mean the possible set of values could be determined by looking at the distribution of the data with respect to the sample mean and the range.]

Building on this understanding, a more sophisticated approach to inference involves finding a set of possible values by using the margin of error.

$$
\text { The true population proportion = The sample proportion } \pm \text { Margin of Error }
$$

The margin of error is estimated as $\frac{1}{\sqrt{n}}$ where \boldsymbol{n} is the sample size and refers to the maximum value of the radius of the 95% confidence interval.

This is the level of inference required by $\mathbf{O L}$ students at Leaving Certificate. A $\boldsymbol{L C} \mathbf{O L}$ student might therefore conclude
...there is evidence to support the teachers claim that more than 50\% of students in the school like rugby because, based on the sample data, any values in the range $44 \%-72 \%$ are possible values for the proportion of students in the school who like rugby...
[If this cohort were deaing with numerical data and were looking for a set of posible values for the population mean the possible set could be determined by engaging with the empirical rule. The empirical rule formalises the undertanding students get from examining the spread of the distribution with respect to the mean. Knowing the proportion of values that lie within approx 1,2 or 3 standard deviations from the mean allows students to determine what is a possible set of values for the population mean.]

LC HL students are required to build further on these ideas and make more accurate estimates of the possible values of the true population proportion in the case of categorical data or the population mean in the case of numerical data. To do this they

- construct 95\% confidence intervals for the population mean from a large sample and for the population proportion, in both cases using z tables

Constructing confidence intervals brings two ideas together:

- sampling variability and the idea of the standard error of the population proportion/mean
- the empirical rule -95% of the data lies within 1.96 standard deviations of the mean.

The set of possible values, or the confidence interval, is

Sample mean/proportion ± 1.96 standard error

In the case being examined, the set of possible values for the true population proportion would be given by

Sample proportion ± 1.96 standard error $=.58 \pm 1.96 \sqrt{\frac{.58(1-.58)}{50}}$

$$
=.7168 \text { or } .4432
$$

So, the true population proportion lies beween 44.32% and 71.68%.

Compare this with the set of values obtained using the margin of error. LCHL students can examine the effect of increasing the sample size on the precision of the estimate.

LC OL students should understand a hypothesis as a theory or statement whose truth has yet to be proven. However, LC HL students must develop this idea and deal formally with hypothesis testing. They

- perform univariate large sample tets of the population mean (two-tailed z-test only)
- use and interpret p-values

The \boldsymbol{p}-value represents the chance of observing the result obtained in the sample, or a value more extreme, when the hypothesised value is in fact correct. A small p-value would support the teacher's claim because this would have indicated that, if the population proportion was $0.50(50 \%)$, it would be very unlikely that an observation of 0.58 (58\%) would be observed.

A large sample hypothesis test of the population mean has 4 components:

1. A test statistic: This is a standard normal \boldsymbol{z} score that is the difference between the value we have observed for the sample and the hypothesised value for the poulation divided by the standard error of the mean.
2. A decision rule: Reject the hypothesised value if $z>1.96$ or $z<-1.96$
3. A rejection zone: $z>1.96$ or $z<-1.96$
4. Critical values: $\mathbf{z = 1 . 9 6 , z = - 1 . 9 6}$ since we are using the 5% level of significance.
