Task:

In your groups discuss the definitions of the following

- Domain of a function
- Range of a function

Write a note in your learning journal that will help you to remember these definitions.
(i) Find the domain and range of the following functions. Justify your answer algebraically and graphically

- $\boldsymbol{f}(\mathrm{x})=\mathrm{x}^{2}+2$
- $\boldsymbol{f}(\mathrm{t})=\frac{1}{t+2}$
- $\boldsymbol{g}(\mathrm{s})=\sqrt{3-x}$
(ii) You are told that the height \boldsymbol{h} of a certain projectile as a function of time in seconds is given by $\boldsymbol{h}=20 \boldsymbol{t}-4.9 \boldsymbol{t}^{2}$. Find the domain and range of this function.

We decided that the domain is a
set and it is made up of only numbers
that will make the function work
The function is working when the output is Real. The range is a set too it is all the numbers that come
out when all the numbers in the domain go into the function.
(i) $f(x)=x^{2}+2$

$$
\begin{aligned}
& \text { The domain is any Real number } \\
& \text { becche there ore restrictions on } x
\end{aligned}
$$

x^{2} is never negative so $x^{2}+2$ is always greater than 2
So the range of $f(x)$ is all real numbers $f(x) \geqslant 2$

$$
f(t)=\frac{1}{t+2}
$$

Domain $C o n$ be any number except
-2 because $t+2$ cannot be equal to 0 So $\quad t+2 \neq 0$

6 $7-2$
No matter how large or small t
gets $f(t)$ will never equal 0
Range is all real numbers except

$$
\begin{array}{r}
g(s)=\sqrt{3-x} \\
3-x \geqslant 0 \\
-x \geqslant-3 \\
x \leqslant 3
\end{array}
$$

$$
\begin{aligned}
& \text { Domain is all Real numbers } x \leqslant 3 \\
& g(s) \geqslant 0 \text { is the range }
\end{aligned}
$$

time values cant be negative and the projective hiss the ground and stops it does ic go undergrand. it hits the ground when

$$
20 t-4 \cdot 9 t^{2}=0
$$

$$
(20-4 \cdot 9 \theta) t=0
$$

$$
t=0 \quad \text { OR } \quad 20-49 t=0
$$

$$
t=4 \cdot 08 \sec s
$$

So Domain is
all real values of t where $0 \leq t \leq 4.08$
The Max height it goes to is When $20-9 i t=0$

$$
91 t=20
$$

$$
\text { at } \quad t=2.04 \mathrm{sec}
$$

So

$$
\begin{aligned}
h & =20(204)-4 \cdot 9(2 \cdot 04)^{2} \\
& =20 \cdot 408
\end{aligned}
$$

Range is all real values

$$
0 \leqslant h \leqslant 20.408
$$

Note to students: The students whose work is displayed above used Geogebra as a tool to help their understanding of the concepts under investigation. Can you use Geogebra? Have you downloaded this onto your PC at home?
Look at the strategies the students used to decide on the domains and ranges of the functions; can you generalise the strategies used? Write a note in your journal outlining how you might find the domain and range of a function.

Extension: Now that you have a means of finding the domain and range of given functions, consider the reverse process. If you were given the range and domain of a function would you be able to sketch the graph of the function?

