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The review of research on mathematics learning of children aged 3–8 years 
is presented in two reports. These are part of the NCCA’s Research Report 
Series (ISSN 1649–3362). The first report (Research Report No. 17) focuses 
on theoretical aspects underpinning the development of mathematics 
education for young children. The second report (Research Report No. 18)  
is concerned with related pedagogical implications. The key messages from 
Report No. 17 are presented in this Executive Summary. 

A View of Mathematics 

Both reports are underpinned by a view of mathematics espoused by Hersh (1997). That is, 
mathematics as ‘a human activity, a social phenomenon, part of human culture, historically evolved, 
and intelligible only in a social context’ (p. xi). Mathematics is viewed not only as useful and as a 
way of thinking, seeing and organising the world, but also as aesthetic and worthy of pursuit in its 
own right (Zevenbergen, Dole, & Wright, 2004). All children are viewed as having an ability to solve 
mathematical problems, make sense of the world using mathematics, and communicate their 
mathematical thinking.

Context 

The context in which this report is presented is one in which there is a growing awareness of the 
importance of mathematics in the lives of individuals, in the economy and in society more generally. 
In parallel with this there is a growing realisation of the importance of the early childhood years as a 
time when children engage with many aspects of mathematics, both at home and in educational 
settings (Ginsburg & Seo, 1999; Perry & Dockett, 2008). Provision for early childhood education in 
Ireland has also increased. A recent development is free preschool education for all children in the 
year prior to school entry. In addition, a new curriculum framework, Aistear (National Council for 
Curriculum and Assessment [NCCA], 2009a; 2009b), is available to support adults in developing 
children’s learning from birth to six years. At the same time, however, there are concerns about the 
levels of mathematical reasoning and problem-solving amongst school-going children, as evidenced 
in recent national and international assessments and evaluations at primary and post-primary levels 
(e.g., Eivers et al., 2010; Perkins, Cosgrove, Moran & Shiel, 2012; Jeffes et al., 2012). While the 1999 
Primary School Mathematics Curriculum (PSMC) has been well received by teachers (NCCA, 2005), 
the Inspectorate of the then Department of Education and Science identified some difficulties with 
specific aspects of implementation (DES, 2005). The current report envisions a revised PSMC that is 
responsive to these concerns, that recognises the importance of building on children’s early 
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engagement with mathematics, and which takes account of the changing demographic profile of 
many educational settings, and the increased diversity among young children. 

Definitions of Mathematics Education 

Current views of mathematics education are inextricably linked with ideas about equity and access 
and with the vision that mathematics is for all (Bishop & Forganz, 2007), i.e. all children should have 
opportunities to engage with and benefit from mathematics education and no child should be excluded.

Mathematics education is seen as comprising a number of mathematical practices that are negotiated 
by the learner and teacher within broader social, political and cultural contexts (Valero, 2009).  
An interpretation of mathematics that includes numeracy but is broader should underpin efforts 
towards curricular reform in Ireland. This report identifies mathematical proficiency (conceptual 
understanding, procedural fluency, strategic competence, adaptive reasoning and productive 
disposition) (NRC, 2001) as a key aim of mathematics education. It is promoted through engagement 
with processes such as connecting, communicating, reasoning, argumentation, justifying, representing, 
problem-solving and generalising. All of these are encompassed in the overarching concept of 
mathematization. This involves children interpreting and expressing their everyday experiences  
in mathematical form and analysing real world problems in a mathematical way through engaging 
in these key processes (Ginsburg, 2009a; Treffers & Beishuizen, 1999). Thus mathematization is 
identified as a key focus of mathematics education and as such it is given considerable attention  
in this report. Mathematics education should address the range of mathematical ideas that all 
children need to engage with. It should not be limited to number. 

Theoretical Perspectives

Cognitive and sociocultural perspectives provide different lenses with which to view mathematics 
learning and the pedagogy that can support it (Cobb, 2007). Cognitive perspectives are helpful in 
focusing on individual learners while sociocultural perspectives are appropriate when focusing on, for 
example, pedagogy (Cobb & Yackel, 1996). Sociocultural, cognitive perspectives and constructionism 
all offer insights which can enrich our understanding of issues related to the revision of the 
curriculum. They do so by providing key pointers to each of the elements of learning, teaching, 
curriculum and assessment. Used together they can help in envisaging a new iteration of the PSMC. 

In this report, learning mathematics is presented as an active process which involves meaning 
making, the development of understanding, the ability to participate in increasingly skilled ways in 
mathematically-related activities and the development of a mathematical identity (Von Glasersfeld, 
1984; Rogoff, 1998; Lave & Wenger, 1991). Learning also involves the effective use of key tools 
such as language, symbols, materials and images. It is seen to be supported by participation in the 
community of learners engaged in mathematization, in small-group and whole class conversations. 
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The proactive role of the teacher must be seen to involve the creation of a zone of proximal 
development, the provision of scaffolding for learning and the co-construction of meaning with the 
child based on awareness and understanding of the child’s perspective (e.g., Bruner, 1996). It also 
involves a dialogical pedagogy of argumentation and discussion designed to support effective 
conceptual learning and the ability for teachers to act contingently (e.g., Corcoran, 2012). 

Language and Communication 

Cognitive/constructivist and sociocultural perspectives on learning emphasise the key role of 
language in supporting young children’s mathematical development. Emerging learning theories 
point to the importance of mathematical discourse as a tool to learn mathematics (e.g., Sfard, 2007). 
In addition to introducing young children to mathematical vocabulary, it is important to engage 
them in ‘math talk’ – conversations about their mathematical thinking and reasoning (Hufferd-Ackles, 
Fuson & Sherin, 2004). Such talk should occur across a broad range of contexts, including unplanned 
and planned mathematics activities and activities such as storytelling or shared reading, where 
mathematics may be secondary. Children at risk of mathematical difficulties, including those living in 
disadvantaged circumstances, may need additional, intensive support to develop language and the 
ability to participate in mathematical discourse (Neuman, Newman & Dwyer, 2011).

Research indicates an association between the quality and frequency of mathematical language 
used by carers, parents and teachers as they interact with young children, and children’s 
development in important aspects of mathematics (Klibanoff et al., 2006; Gentner, 2003; Levine  
et al., 2012). This highlights the importance of adults modelling mathematical language and 
encouraging young children to use such language. Conversations amongst children about 
mathematical ideas are also important for mathematical development (e.g., NRC, 2009). 

Defining Goals 

The goal statements of a curriculum should be aligned with its underlying theory. Curriculum goals 
should reflect new emphases on ways to develop children’s mathematical understandings and to 
foster their identities as mathematicians (Perry & Dockett, 2002; 2008). This report proposes that 
processes and content should be clearly articulated as related goals (e.g., mathematization can be 
regarded as both a process and as content since as children engage in processes e.g., connecting, 
they construct new and/or deeper understandings of content). This contrasts with the design of the 
Primary School Mathematics Curriculum (PSMC), where content and processes are presented 
separately, and content is emphasised over processes. An approach in which processes are 
foregrounded, but content areas are also specified, is consistent with a participatory approach to 
mathematics learning and development. 
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General goals need to be broken down for planning, teaching and assessment purposes. This can  
be done through identifying critical ideas i.e., the shifts in mathematical reasoning required for 
the development of mathematical concepts (e.g., Simon, 2006; Sarama & Clements, 2009).  
An understanding of this framework enables teachers to provide support for children’s progression 
towards curriculum goals. 

The Development of Children’s Mathematical Thinking

The idea of stages of development in children’s mathematical learning (most often associated with 
Piaget) has now been replaced with ideas about developmental/learning paths. This is a relatively 
recent area of research in mathematics education (Daro et al., 2011) and as such is still under 
development. Learning paths are also referred to as learning trajectories. They indicate the 
sequences that apply in a general sense to development in the various domains of mathematics 
(e.g., Fosnot & Dolk, 2001; Sarama & Clements, 2009; van den Heuvel-Panhuizen, 2008). This 
report envisages that general learning paths will provide teachers with a basis for assessing and 
interpreting the mathematical development in their own classroom contexts, and will lead to 
learning experiences matched to individual children’s needs.

There is variation in the explication of learning paths, for example, linear/nonlinear presentation, 
level of detail specified, mapping of paths to age/grade, and role of teaching. Different 
presentations reflect different theoretical perspectives. An approach to the specification of learning 
paths that is consistent with sociocultural perspectives is one which recognises the paths as

i. provisional, as many children develop concepts along different paths and there can never be 
certainty about the exact learning path that individual children will follow as they develop 
concepts

ii. not linked to age, since this suggests a normative view of mathematics learning

iii. emerging from engagement in mathematical-rich activity with children reasoning in, and 
contributing to, the learning/teaching situation (e.g., Fosnot & Dolk, 2001; Stigler & Thompson, 
2012; Wager & Carpenter, 2012).

Assessing and Planning for Progression

Of the assessment approaches available, formative assessment offers most promise for generating  
a rich picture of young children’s mathematical learning (e.g., NCCA, 2009b; Carr & Lee, 2012). 
Strong conceptual frameworks are important for supporting teachers’ formative assessments  
(Carr & Lee, 2012; Ginsburg, 2009a; Sarama & Clements, 2009). These influence what teachers 
recognise as significant learning, what they take note of and what aspects of children’s activity they 
give feedback on. There is a range of methods (observation, tasks, interviews, conversations, 
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pedagogical documentation) that can be used by educators to assess and document children’s 
mathematics learning and their growing identities as mathematicians. Digital technologies offer 
particular potential in this regard. These methods are challenging to implement and require teachers 
to adopt particular, and for some, new, perspectives on mathematics, mathematics learning and 
assessment. Constructing assessments which enlist children’s agency (for example, selecting pieces 
for inclusion in a portfolio or choosing particular digital images to tell a learning story) has many 
benefits. One benefit is the potential for the inclusion of children’s perspectives on their learning 
(Perry & Dockett, 2008). 

In the main, the current literature affords scant support for the use of standardised tests with 
children in the age range 3–8 years (e.g., Mueller, 2011). More structured teacher-initiated 
approaches and the use of assessment within a diagnostic framework may be required on some 
occasions, for example, when children are at risk of mathematical difficulties. However, research 
indicates a range of factors problematising the use of standardised measures with young children 
(e.g., Snow & Van Hemel, 2008).

The complex variety of language backgrounds of a significant minority of young children presents  
a challenge in the learning, teaching and assessment of mathematics. Children for whom the 
language of the home is different to that of the school need particular support. That support should 
focus on developing language, both general and mathematical, to maximise their opportunities for 
mathematical development and their meaningful participation in assessment (Tabors, 2008; Wood 
& Coltman, 1998). Educators carrying out assessment procedures such as interviews, observations 
or tasks in an immersion context have the dual purpose of assessing and evaluating both the 
mathematical competences and language competences of the child, to gain a full picture. Dual 
language assessment is particularly desirable in this context (Murphy & Travers, 2012; Rogers,  
Lin & Rinaldi, 2011).

Addressing Diversity

Mathematics ‘for all’ implies a pedagogy that is culturally sensitive and takes account of individuals’ 
ways of interpreting and making sense of mathematics (Malloy, 1999; Fiore, 2012). An issue of 
concern is the limitations of norms-based testing which can disadvantage certain groups. This 
indicates the need to use a diverse range of assessment procedures to identify those who are 
experiencing learning difficulties in mathematics.

The groups of individuals that often require particular attention in the teaching and learning of mathematics 
are ‘exceptional’ children (those with developmental disabilities or who are especially talented at 
mathematics) (Kirk, Gallagher, Coleman, & Anastasiow, 2012). These individuals do not require 
distinctive teaching approaches, but there is a need to address their individual needs. In particular, the 
use of multi-tiered tasks in which different levels of challenge are incorporated is advocated (Fiore, 2012). 
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In addition, this report identifies the need to provide parents and educators with particular supports 
to ensure a mathematically-interactive and rich environment for children aged 3–8 years. It also 
indicates that the intensity of the support needs to vary according to the needs of particular groups 
of children (e.g., Ehrlich, Levine, & Goldin-Meadow, 2006). 

Key Implications

The following are the key implications that arise from this report for the development of the 
mathematics curriculum for children aged 3–8 years:

 � In the curriculum, a view of all children as having the capacity to engage with deep and 
challenging mathematical ideas and processes from birth should be presented. From this 
perspective, and in order to address on-going concerns about mathematics at school level,  
a curriculum for 3–8 year-old children is critical. This curriculum needs to take account of the 
different educational settings that children experience during these years. 

 � The curriculum should be developed on the basis of conversations amongst all educators, including 
those involved in the NCCA’s consultative structures and processes, about the nature of mathematics 
and what it means for young children to engage in doing mathematics. These conversations should 
be informed by current research, as synthesised in this report and in Report No. 18, which presents a 
view of mathematics as a human activity that develops in response to everyday problems. 

 � The overall aim of the curriculum should be the development of mathematical proficiency 
(conceptual understanding, procedural fluency, strategic competence, adaptive reasoning, and 
productive disposition). As mathematization plays a central role in developing proficiency, the 
processes of mathematization should permeate all learning and teaching activities. These include 
connecting, communicating, reasoning, argumentation, justifying, representing, problem-solving 
and generalising. (Chapter 1)

 � The curriculum should foreground mathematics learning and development as being dependent 
on children’s active participation in social and cultural experiences, while also recognising the 
role of internal processes. This perspective on learning provides a powerful theoretical 
framework for mathematics education for young children. Such a framework requires careful 
explication in the curriculum and its implications for pedagogy should be clearly communicated. 
(Chapter 2)

 � In line with the theoretical framework underpinning the curriculum, mathematical discourse 
(math talk) should be integral to the learning and teaching process. The curriculum should also 
promote the development of children’s mathematical language in learning situations where 
mathematics development may not be the primary goal. Particular attention should be given  
to providing intensive language support, including mathematical language, to children at risk of 
mathematical difficulties. (Chapter 3)



14
Research Report No. 17 
Mathematics in Early Childhood and Primary Education (3–8 years)

 � The goal statements of the curriculum should be aligned with its underlying theory. An approach 
whereby processes are foregrounded but content areas are also specified is consistent with a 
participatory approach to mathematics learning and development. In the curriculum, general 
goals need to be broken down for planning, teaching and assessment purposes. Critical ideas 
indicating the shifts in mathematical reasoning required for the development of key concepts 
should be identified. (Chapter 4) 

 � Based on the research which indicates that teachers’ understanding of developmental 
progressions (learning paths) can help them with planning, educators should have access to 
information on general learning paths for the different domains. Any specification of learning 
paths should be consistent with sociocultural perspectives, which recognise the paths as 
provisional, non-linear, not age-related and strongly connected to children’s engagement in 
mathematically-rich activity. Account needs to be taken of this in curriculum materials. Particular 
attention should be given to the provision of examples of practice, which can facilitate children’s 
progression in mathematical thinking. (Chapter 5)

 � The curriculum should foreground formative assessment as the main approach for assessing 
young children’s mathematical learning, with particular emphasis on children’s exercise of agency 
and their growing identities as mathematicians. Digital technologies offer particular potential in 
relation to these aspects of development. The appropriate use of screening/diagnostic tests 
should be emphasised as should the limitations of the use of standardised tests with young 
children. The curriculum should recognise the complex variety of language backgrounds of a 
significant minority of young children and should seek to maximise their meaningful participation 
in assessment. (Chapter 6)

 � A key tenet of the curriculum should be the principle of ‘mathematics for all’. Central to this is the 
vision of a multicultural curriculum which values the many ways in which children make sense of 
mathematics. While there are some groups or individuals who need particular supports in order 
to enhance their engagement with mathematics, in general distinct curricula should not be 
advocated. (Chapter 7)

 � Curriculum developments of the nature described above are strongly contingent on concomitant 
developments in pre-service and in-service education for educators at preschool and primary levels.



A View of Mathematics
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This report is concerned with definitions, theories, stages of developments 
and progression in mathematics in early childhood and primary education 
for children aged 3–8 years. It is premised on a view of mathematics as not 
only useful and as a way of thinking, seeing and organising the world, but 
also as aesthetic and worthy of pursuit in its own right (Zevenbergen, Dole, 
& Wright, 2004). 

Mathematics is intrinsic to our comprehension of the world. Stewart (1996) gives an overview of the 
many patterns that are found in nature and refers, in particular, to the pattern of number (e.g., the 
Fibonacci numbers and petals of flowers), the patterns of form (e.g., those found in sand dunes) and 
the pattern of movement (e.g., the regular rhythm of the human walk). He maintains that 
mathematics helps us to understand nature:

Each of nature’s patterns is a puzzle, nearly always a deep one. Mathematics is brilliant at 
helping us to solve puzzles. It is a more or less systematic way of digging out the rules and 
structures that lie behind some observed pattern or regularity, and then using those rules 
and structures to explain what’s going on. Indeed, mathematics has developed alongside our 
understanding of nature, each reinforcing the other. (p. 16)

Appreciation of all of these facets of mathematics greatly enhances children’s capacities to engage 
fully with the world around them.

Mathematics also has a utilitarian aspect. Struik (1987) describes how, as far back as the Old Stone 
Age, there was a need to measure length, volume and time. Nowadays, the availability of 
increasingly sophisticated tools allows ever-more accurate measurements of a myriad of attributes 
to be obtained. Wheeler and Wheeler (1979) suggest that mathematics is a language:

Mathematics is the language of those who wish to express ideas of shape, quantity, size and 
order. It is the language that is used to describe our growing understanding of the physical 
universe, to facilitate the transactions of the market place, and to analyze and understand 
the complexities of modern society. Thus, to communicate effectively, it is essential to have 
a knowledge of the language. (p. 3)

Others talk about the beauty and joy of mathematics. For example, Poincaré’s ‘Aha’ moment  
(the discovery of a new expression for Fuchsian functions) as he stepped on a bus is often cited to 
illustrate the stages of the creative process (e.g., Hadamard, 1945; Koestler, 1969). In interviews 
conducted with 70 mathematicians about their work, Burton (2004) found that the majority of her 
participants identified something which they termed intuition, insight, or, in a few cases, instinct as 
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a key factor in coming to know mathematics – this insight was linked with a sense of joy. Dreyfus 
and Eisenberg (1986) suggest that just as individuals come to appreciate music, art and literature by 
understanding their underlying structures, so too they can appreciate mathematics. 

However, mathematics is also linked with power. Since mathematics is behind most of society’s 
inventions (not all for the common good!), it tends to give those who succeed in it access to wealth 
and power. It thus acts as a ‘gatekeeper’ – studies around the world show that gender, ethnicity 
and social class can impact on successful performance in mathematics and thus a large part of the 
world’s population is denied access to its ‘power’ (e.g., Ernest, Greer, & Sriraman, 2009; Secada, 
1995). While power and wealth may not seem to be of immediate concern to 3–8 year-old children, 
the foundations of mathematical proficiency are established during these years. Different 
conceptualisations of what it is to do mathematics can ameliorate such inequities and this is given 
attention throughout this report.

In the words of Hersh (1997, p. xi), ‘mathematics is a human activity, a social phenomenon, part of 
human culture, historically evolved, and intelligible only in a social context’. Thus, this report and the 
accompanying one (Research Report No. 18) are also founded on a view of all individuals having an 
innate ability to solve problems and make sense of the world through mathematics. 
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In this introduction we describe the broad context in which the development 
of a revised mathematics curriculum for children in the 3–8 year age range 
is embedded. This includes a description of current provision of early 
childhood education in Ireland. It also includes consideration of the existing 
Primary School Mathematics Curriculum (PSMC) and issues around its 
implementation, a review of performance on national and international 
assessments of mathematics, and an overview of recent policy initiatives 
related to mathematics education. Following this we look at the evolving 
language context in which mathematics education is provided in Irish 
schools and we acknowledge the range of social issues that can impact on 
children’s mathematics learning in early education settings. We conclude 
with an overview of the remaining chapters in the report. 

Context

The profile of mathematics as a curriculum area has increased greatly in recent years as countries 
seek to establish ‘knowledge-based’ or ‘smart’ economies, where many positions require a strong 
knowledge of mathematics, science or related areas (e.g., Commission of the European 
Communities, 2011). In educational circles, there is a concern to ensure that adequate numbers of 
students choose to study STEM subjects (science, technology, engineering and mathematics) at 
school, particularly at advanced levels (e.g., Jeffes et. al, 2012). In Ireland, a shift towards a 
knowledge-based economy has been signalled in government reports (e.g., Department of the 
Taoiseach, 2008) and policy documents (e.g., Department of the Taoiseach, 2011). These moves 
have been accompanied by a strong reform agenda in education, including the introduction of 
Aistear, a curriculum framework for children in preschool and in the early years of primary school 
(NCCA, 2009a), and revised syllabi in mathematics at post-primary level (The Project Maths 
initiative). Now the focus has shifted to mathematics at preschool and early primary levels. 

Developing Mathematics Education in Ireland for Children Aged 3–8 Years 

Preschool education and care in Ireland is to a large extent provided by community and voluntary 
agents and agencies, supported by grant aid from the government. In January 2010 a ‘free 
preschool year’ was introduced. The objective of this Early Childhood Care and Education 
Programme, which is open to both community and commercial service providers, is to benefit 
children in the key developmental period prior to starting school. Approximately 63,000 children 
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participated in the preschool year in the first year of its implementation. The free preschool year is 
now available to all eligible children in the year before they attend primary school and there is the 
possibility that in the near future this will be extended to two years. 

Children in Ireland can be enrolled in primary schools from the age of four, and up to recently half  
of all four-year-olds and almost all five-year-olds were enrolled in infant classes in primary schools. 
Also, there are approximately 1,600 three-year-old children, deemed to be at risk of educational 
disadvantage, enrolled in half-day preschool sessions in Early Start units in primary schools. The 
Delivering Equality of Opportunity in Schools (DEIS) programme1 extends additional supports for 
schools in areas of economic and social disadvantage. The DES also provides various targeted 
supports for young children with special educational needs. 

Aistear: the Early Childhood Curriculum Framework (National Council for Curriculum and Assessment 
(NCCA), 2009a) provides guidance and support for all adults working with the youngest children 
(birth to six). Sample learning opportunities related to the themes of Communicating and Exploring 
and Thinking illustrate in a general way how educators can support the development of various 
aspects of mathematical thinking and learning with toddlers and young children. However, because 
Aistear is a framework and not a curriculum, it does not provide specific guidance related to 
mathematics learning and teaching. The PSMC provides guidance for teachers of children from the 
age of 4 years. While children attending preschools may engage in many activities which promote 
mathematical learning and development, there is no systematic specification of these. Preschools may 
choose to structure their work within a particular curriculum such as High Scope or Montessori, they 
may use a variation on these, or they may develop their own curriculum. 

Opportunities now exist for a systematic approach to rethinking mathematics education for all 
children aged 3–8 years. A revised approach should address the mathematical learning of children 
in preschool education, and also the dual, overlapping approaches described above in relation to 
official guidance across the age-range. It should be based on the understanding that mathematics 
learning begins early in the home and needs to be supported in a structured way right from the 
beginning of preschool education. It should also be predicated on findings that high quality early 
childhood education is a critical factor in ensuring that the mathematics potential of all children is 
realised and that existing equity gaps are closed (e.g., Bishop & Forganz, 2007; Ginsburg, Lee & 
Boyd, 2008; Perry & Dockett, 2008).

1 DEIS (Delivering Equality of Opportunity in Schools) is an action plan put in place by the (now) Department of 
Education and Skills in 2005 to address the effects of educational disadvantage in schools. The School Support 
Programme (SSP) under DEIS comprises a set of measures that provides schools with additional human and 
material resources to tackle educational disadvantage, in schools with the highest levels of assessed 
disadvantage. Urban schools in the SSP are allocated to Band 1 or Band 2, depending on their level of 
disadvantage. There is a separate set of measures for rural schools. 
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Curriculum Context 

The current Primary School Curriculum (PSC) (Government of Ireland, 1999) was introduced in 1999, 
with in-service for mathematics provided in 2001–02, and implementation beginning in 2002–03 
(DES, 2005). While maintaining some important links with its predecessor, Curaclam na Bunscoile 
(DE, 1971), the PSMC also drew heavily on Vygotskian ideas about teaching and learning, in that it 
emphasised the social aspects of mathematics development, the importance of language in 
acquiring mathematical knowledge, and the key role of the teacher in modelling and supporting 
children’s emerging understanding of mathematics. 

The PSMC, which is based on socio-constructivist and guided-discovery theories of learning, aimed to 
equip children with a positive attitude towards mathematics, to develop problem-solving abilities and 
the ability to apply mathematics to everyday life, to enable children to use mathematical language 
effectively and accurately, and to enable them to acquire an understanding of mathematical concepts 
and processes, as well as proficiency in fundamental skills and basic number facts. 

The PSMC was generally well-received by teachers. In a review of curriculum implementation by the 
NCCA (2005), a majority of teachers reported an increased emphasis on practical work as its 
greatest success, while enjoyment of mathematics by children was also highlighted. The 
implementation of practical activities on a daily basis, especially for Measures2, was also noted. 
About half of teachers reported that catering for the range of children’s mathematical abilities 
represented their greatest challenge, with inadequate instructional time contributing to this. 
Significantly, teachers of junior and senior infants identified classifying, matching and ordering as 
the strand units that had most impact on their planning and teaching3. Data was identified as the 
strand that teachers struggled with most often. 

An evaluation of curriculum implementation by the Inspectorate of the then Department of 
Education and Science (DES, 2005), which was mainly based on observations of the work of 
teachers in teaching mathematics in school settings, found that the PSMC was not being 
implemented successfully in a significant minority of schools and classrooms. For example, some 
difficulties with implementation were noted, especially for Shape and Space, where children in 
one-third of observed classes were able to name shapes, but were not familiar with their properties, 
and for Data, where scope was identified for the development of specific skills and the use  
of integration, linkage, and a stronger cross-curricular approach. In the case of teaching  

2 Measures is one of five strands in the curriculum for all grade bands. The others were Number, Shape  
& Space, Algebra and Data.

3 Whereas the PSMC has five strands at all grade bands, an additional strand – Early Mathematical Activities – is 
included in the curriculum for junior and senior infant classes, and its strand units are Classifying, Matching, 
Comparing and Ordering.
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Problem-Solving4, where weaknesses were also apparent in one-third of classrooms, inspectors 
referred to non-implementation of the school plan with respect to problem-solving, and ‘an 
over-reliance on traditional textbook problems, which did not promote the development of specific 
problem-solving skills’ (p. 29). In considering the use of guided discovery methods and concrete 
materials, inspectors noted that learning in one-third of classes ‘was passive and reliant on activities 
that lacked focus and required more purposeful direction by the teacher’ (p. 29). Inspectors also 
noted an ‘over-reliance on whole-class teaching, where teacher talk dominated and where pupils 
worked silently on individual tasks for excessive periods’ (p. 30). A number of difficulties with the 
assessment of mathematics were also noted, including inappropriate use of standardised tests and 
an absence in some classrooms of continuous records of children’s achievement. 

Performance Context 

A number of studies, both national and international, have raised concerns about performance 
among children in Ireland on specific aspects of mathematics, and, in some cases, on overall 
mathematical performance.

The 2009 National Assessment of Mathematics Achievement (Eivers et al., 2010) – the first national 
assessment since the introduction of the PSMC to assess mathematics in both second and sixth 
classes – reports poorer performance on items designed to assess Measures at both class levels, 
compared with other content strands, and a decline in performance on Measures and Shape and 
Space between second and sixth; performance on items designed to assess the Applying and 
Problem-Solving process skill was weak at both second and sixth classes (a finding that also 
emerged in earlier national assessments conducted at other grade levels). Other problematic areas 
were integrating mathematics into other subject areas (61%), working with lower-achieving children 
in mathematics (60%), and extending the abilities of higher-achieving children (56%). 

In the mathematics component of the Trends in International Mathematics and Science Study (TIMSS), 
administered to children in fourth class in over 50 countries in 2011, Ireland achieved a mean score (527) 
that was significantly above the international average, but significantly below the mean scores of 13 
countries/regions, including Northern Ireland (562), Belgium (Fl.) (549), Finland (545), England (542), the 
United States (541), the Netherlands (540) and Denmark (537), as well as several Asian countries. Further, 
whereas 9% of children in Ireland achieved at the Advanced International Benchmark (the highest 
‘proficiency’ level on TIMSS maths), 43% of children in Singapore, 39% in Korea and 24% in Northern 
Ireland did so (Eivers & Clerkin, 2012). Relative to their performance on the test as a whole, Irish children 
performed quite well on the TIMSS content area of Number, and less well on Geometric Shapes & Measures 

4 Applying and Problem-Solving is one of six process skills in the PSMC which are taught at all grade bands.  
The others are Communicating and Expressing, Integrating and Connecting, Reasoning, Implementing and 
Understanding and Recalling.
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and on Data. On the process subscales, children in Ireland performed relatively well on Knowing items, 
and quite poorly on Reasoning items, including items requiring problem-solving abilities. 

The relatively disappointing performance of children in Ireland on TIMSS mathematics contrasts with 
the performance of the same children on a related study administered at the same time – the 2011 
Progress in International Reading Literacy Study (PIRLS). Just five countries had mean scores that 
were significantly higher than Ireland’s in PIRLS and the proportion of high achievers in Ireland was 
about the same as in other high-scoring countries (Eivers & Clerkin, 2012). 

In 2009, 15-year-olds in Ireland performed significantly below the average for OECD countries on the 
mathematics component of the Programme for International Student Assessment (PISA), ranking 26th 
of 34 OECD member countries. Further, 21% of students in Ireland performed at or below Level 1 on 
the PISA mathematics scale. This is interpreted by the OECD (2010) as indicating that they lack the 
mathematics skills needed for everyday living and/or future study. While the size of the decline in 
performance on PISA mathematics in Ireland between 2003 (503 points) and 2009 (487) has been 
disputed (Perkins et al., 2012), the relatively disappointing performance by children in Ireland in 
mathematics across PISA cycles is worth noting, in a context in which performance on reading literacy 
(except in 2009) and scientific literacy have been above their respective OECD averages. Concern must 
also be expressed at the relatively poor performance of students in Ireland on the Space and Shape 
component of PISA mathematics in 2003 and 2012, when their mean scores were significantly below 
the corresponding OECD average. PISA Shape and Space items require students to solve problems that 
include shapes in different representations and dimensions (Cosgrove et al., 2005; Perkins et al., 2013). 
Female students in Ireland performed particularly poorly on this PISA content domain.

Notwithstanding differences between national curricula/syllabi and the assessment frameworks 
accompanying international studies (e.g., Close, 2006), the relatively disappointing overall 
performance of children in Ireland on international studies of mathematics achievement is a matter 
of concern, given current concerns about standards in mathematics, the role of mathematics in 
other subjects, and efforts to encourage students to select STEM subjects, especially at  
upper-secondary level. Related to this, it is a matter of concern that problem-solving presents a 
significant difficulty for children in Ireland from at least second class onwards. Without a strong 
foundation in this important process, many children may not reach their potential in mathematics.

Policy Context

There have been two significant policy initiatives in mathematics education in recent years. The first, 
Project Maths (PM), a new initiative to change the teaching and assessment of mathematics in 
post-primary schools, has been underway on a phased basis since 2008, and many aspects of the 
revised PM syllabi have now been implemented in all schools. The broad aims of PM, which is based 
on sociocultural theories of mathematics, are to equip students at Junior and Leaving Certificate 
levels with:
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 � the ability to recall relevant mathematical facts

 � instrumental understanding (‘knowing how’) 

 � relational understanding (‘knowing why’)

 � the ability to apply their mathematical knowledge and skill to solve problems in familiar and 
unfamiliar contexts

 � analytical and creative powers in mathematics

 � an appreciation of mathematics and its uses 

 � a positive disposition towards mathematics (Government of Ireland, 2012, p. 6).

Important features of Project Maths include the following:

 � an acknowledgement of the continuum of mathematics development that extends from early 
childhood through post-primary schooling, with an emphasis on connected and integrated 
mathematical understanding 

 � efforts to establish links between mathematics learning at primary level through the 
implementation of a common introductory course in the first year of post-primary schooling

 � establishment of a learning environment for problem-solving, in which problem-solving 
permeates all aspects of mathematics learning, and students consolidate previous learning, 
extend their knowledge, and engage in new learning experiences 

 � engagement with a wide variety of mathematical problems, some of which are purely 
mathematical, and others more applied 

 � links within strands of study to other subjects

 � a focus on conceptual understanding (Government of Ireland, 2012, p. 8).

The effects of PM are as yet unclear. An initial study (Jeffes et al., 2012) was somewhat positive 
about the performance of samples of Junior Certificate and Leaving Certificate students5 on tests of 
mathematics administered in spring 2012 that were benchmarked against international standards. 
However, no significant differences in performance were found between students in initial PM 
schools (where implementation of PM began in 24 schools in 2008) and other schools (where 
implementation began in 2010). Nevertheless, students in the initial schools were found to engage 
more often in the types of activities associated with PM (applying mathematics to real-life 

5 Junior Certificate students in other schools had not studied any of the new syllabus materials at the time of 
testing; Leaving Certificate students in other schools had studied some aspects.
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situations, conducting investigations, and participating in discursive and collaborative activities), 
compared with students in schools where PM had not been fully implemented. A follow-up report 
on the implementation of PM (Jeffes et al., 2013) again raised issues about the extent to which PM 
was being implemented effectively in schools. A review of student materials found evidence of a 
strong emphasis on implementing mathematical procedures and, to a lesser extent, problem 
solving, but ‘little evidence that students are demonstrating reasoning and proof and 
communication, or making connections between mathematics topics’ (p. 5).   

The relevance of PM to mathematics in early years and primary school settings concerns the extent 
to which proposals for change among children in the 3–8 years range might need to be broadly 
consistent with the goals and methodologies underpinning Project Maths, including a  
substantially-increased emphasis on problem-solving, and a strong focus on the application of 
mathematical ideas in real-life contexts. In considering this it can be noted that these two elements 
are key features of the current PSMC.

In the second policy initiative, the Department of Education and Skills published a National Strategy 
to Improve Literacy and Numeracy Among Young People 2011–20 (DES, 2011). The strategy made a 
strong case for improving standards in literacy and numeracy across all levels of the education 
system, and set out a series of actions designed to bring about improvement, including 

 � an increased focus on literacy and numeracy across the curriculum, including increased allocation 
of time to the teaching of English and mathematics, some of which could involve cross-curricular 
activities 

 � the clear specification of learning outcomes in revised curricula and the provision of exemplars to 
illustrate such outcomes 

 � the extension of the Aistear early childhood framework (NCCA, 2009a; 2009b) to children in the 
4–6 years age range (i.e., those in the infant classes in primary school) 

 � the achievement of specified targets in the National Assessment of Mathematics at second and 
sixth class (an increase in the proportion of children achieving at the highest proficiency levels, 
and a reduction in the proportion achieving at the lowest levels)

 � the achievement of an increase in the percentage of students taking the Higher Level 
mathematics examination in Leaving Certificate to 30% by 2020 (it was 22% in 2012). 

These actions, together with a range of related measures in the areas of teacher education and teacher 
professional development, are intended to result in a significantly changed educational landscape over 
the next few years, compared with that in place when the PSC was introduced in 1999. 
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Linguistic and Social Contexts

Significant demographic changes have occurred in Ireland since the PSC was introduced in 1999, 
including greatly increased participation of children in the education system who do not speak the 
language of instruction (English or Gaeilge) at home. In the 2009 National Assessment of 
Mathematics, 15% of children in second class who were born outside Ireland had a mean score that 
was lower than that of Irish-born children, but the difference was not statistically significant (Eivers 
et al., 2010). However, 10% of children (mainly born outside of Ireland) reported speaking a 
language other than English or Irish most often at home, and these children had a significantly 
lower mean score (by 22 points) than speakers of English. Interestingly, the difference between the 
latter groups at sixth class was 12 points, and it was not statistically significant. These outcomes 
point to challenges faced by children who speak a language other than English at home in learning 
mathematics. They also point to the need to develop language in the context of teaching 
mathematics, and suggest that progress can be made over time. 

Another linguistic context is that in which children learn mathematics through the medium of Irish. 
In a study of mathematics performance in Irish medium schools in 2010, children in second class in 
Gaelscoileanna achieved a mean score that was significantly higher, by one-sixth of a standard 
deviation, than the average score obtained by a national sample in the 2009 National Assessment 
(Gilleece Shiel, Clerkin, & Millar, 2012). However, by sixth class, children in Gaelscoileanna had a 
mean score that was not significantly different from the national average.6 The latter result is 
particularly interesting as the same children achieved a mean score in English reading that was 
one-third of a standard deviation above the national average – with the strong performance in 
English reading attributed to higher socio-economic status among children in Gaelscoileanna. 

Gilleece et al. also found that children in Gaeltacht schools in which Irish was the medium of 
instruction achieved a mean score that was not significantly different from the national average in 
second class, and was significantly higher in sixth class. 

The outcomes of this study point to the challenges faced in teaching mathematics in Irish-medium 
contexts, and to issues around assessment of mathematics, including the language of assessment 
(i.e., whether children are assessed in Irish, English, or a combination of the two languages) and 
instruction (whether, to what extent, and how English is used in mathematics classes).

Socio-economic status has been identified as a factor associated with mathematics achievement. In 
the 2009 National Assessment of Mathematics Achievement, children in second class attending DEIS 
Band 1 urban schools (those with the highest levels of socio-economic disadvantage) achieved a 

6 In second class, 91% of pupils in Gaelscoileanna and 49% in Gaeltacht schools completed the test in Irish.  
The corresponding figures for sixth class were 81% and 59% respectively. It is unclear whether all pupils in sixth 
class taking the test through Irish were able to demonstrate the full range of their mathematical competencies. 
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mean score (217) that was lower than the mean score of children in DEIS Band 2 schools (228), and 
significantly lower than children in non-DEIS urban schools (253) (Eivers et al., 2010). Children 
attending DEIS rural schools (266) and children attending non-DEIS rural schools (259) also achieved 
scores that were significantly higher than children attending DEIS Band 1 schools. Outcomes were 
broadly similar at sixth class, where there was also a difference of 40 points (four-fifths of a standard 
deviation) between children in DEIS Band 1 urban schools and those in non-DEIS urban schools. 

There is evidence that some of the differences in mathematical achievement found in school settings 
may have their origins in children’s home backgrounds. In TIMSS 2011, fourth class children in 
Ireland and on average across participating countries who had ‘some’ or ‘few’ human resources at 
home7 achieved a mean mathematics score that was significantly lower (by one-half of a standard 
deviation) than that of children with ‘many’ resources (Mullis, Martin, Foy, & Arora, 2012). The 
relationship between home environment and mathematics achievement may be mediated by the 
types of language and mathematical activities – whether formal or informal – in which children 
engage in their home. International research (e.g., Sylva, Melhuish, Sammons, Siraj-Blatchford & 
Taggart, 2004) indicates that it is what parents do with children at home, rather than who they are, 
that is of most significance to children’s early learning. 

International research has identified gaps in children’s mathematical knowledge well before they start 
school, in particular among children living in disadvantaged circumstances (e.g., Jordan & Levine, 
2009), with more marked differences on tasks requiring language (Jordan et al., 2006). This issue is 
discussed further in Chapter 3.

Overview of Chapters 

Educators’ beliefs are strongly associated with how they see mathematics and mathematics 
education. Thus, the opening chapter of this report presents three conceptions of mathematics and 
their different implications for mathematics education. It emphasises current views of mathematics 
education as a cultural phenomenon, where issues of equity and access are paramount and where 
numeracy is seen as one aspect of mathematics. The concept of mathematical proficiency is 
presented as an overarching aim, with mathematization as integral to its achievement.

While a wide range of theories are available for explaining mathematical learning and development 
during early childhood, in Chapter 2 we focus on the perspectives afforded by cognitive and 
sociocultural theories. These perspectives are the ones that underpin key developments in mathematics 
education over the last decade. Constructionism is also highlighted because of its importance in 
underpinning recent developments in digital learning and in the use of digital tools for learning. 

7 Level of human resources at home was based on an index that included number of children’s books in the 
home, at least two home study supports (internet connection, own room), parental occupations and parental 
education.
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In Chapter 3, the role of language and communication in young children’s mathematical 
development is considered. Ideas about developing children’s mathematical vocabulary and their 
engagement in math talk are elaborated on. The mathematical language needs of children in 
disadvantaged circumstances and those with language impairment are also considered. 

Two concepts arise as we explore the task of identifying goals for early childhood mathematics 
education in Chapter 4: the concept of ‘big ideas’; and that of ‘powerful mathematical ideas’. 
Differences in emphases between the two approaches to the specification of curriculum goals are 
discussed. These are compared with the approach used to specify content and skills in the 1999 
PSMC. The level of detail that might be employed in the specification of goals is also an issue 
addressed in this chapter.

Chapter 5 traces ideas about stages of development from those associated with Piaget to current 
conceptions of learning trajectories or learning paths. The literature shows how a cognitive 
perspective may give rise to interpretations of children’s thinking about mathematical concepts as 
predetermined. This is contrasted with a sociocultural/situative stance where changes  
in levels of understanding are explored in order to clarify the particular paths that children take.  
We discuss the implications of these different perspectives for learning and teaching.

The range of methods for the formative assessment of children’s mathematical learning is reviewed 
in Chapter 6, including observations, tasks, interviews and conversations. Consideration is also 
given to the appropriateness of using more formal assessments, including screening/diagnostic 
assessments. Potential difficulties relating to the use of standardised tests with children in the age 
range of 3–8 years are highlighted. This chapter also considers assessment of children with special 
educational needs and those for whom their first language is not the language used in the 
education setting. 

Chapter 7 focuses on how preschools and schools might address equity issues in learning 
mathematics. The perspective we present is that groups of children identified as at-risk of 
underachieving because of a learning disability or talent do not require distinctive teaching 
approaches, but that account needs to be taken of their individual learning needs. We also identify 
other groups who may appear to be underachieving because of cultural/social factors, and suggest 
how provision can be made to address their particular needs. 

Chapter 8 outlines the key implications for the redevelopment of the PSMC for children from  
3–8 years of age arising from the report. 
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Defining  
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Mathematics learning begins from birth as children explore the world 
around them. As they develop, they are supported in their learning by the 
people around them. The environment is a rich resource for engaging with 
mathematics, especially when it provides opportunities to listen to and use 
mathematical language and to engage in mathematical ways with everyday 
experiences. Through the assistance of others, children’s attention and 
activity are directed in ways that enable them to reason and to grow in their 
abilities to communicate mathematically. As they do so, they develop an 
affinity with mathematical tools and they take pleasure and interest in 
thinking mathematically.

In order to facilitate children’s journeys into the world of mathematics and to afford them a rich 
experience of the subject, it is important to give consideration to issues related to the foundations of 
mathematics, what it means to engage in mathematics and the key aims and goals for mathematics 
education at preschool and primary levels. These matters are explored further in this chapter. 

The Foundations of Mathematics

Davis and Hersh (1981) suggest that three standard dogmas are usually presented in discussions on 
the foundations of mathematics – Platonism, formalism and constructivism. Platonists are of the 
view that mathematical objects (e.g., geometric shapes) are real and objective and that their 
existence is independent of an individual’s knowledge of them. Those who adopt the formalist 
perspective believe that there are no mathematical objects and that mathematics comprises 
definitions, theorems and axioms. What matters to them are the rules and how one formula can be 
transformed into another. According to constructivists, mathematics is comprised only of those 
objects that individuals construct themselves. Those who hold this conception of mathematical 
knowledge view it as ‘tentative, intuitive, subjective and dynamic’ (Nyaumwe, 2004, p. 21). Hersh 
(1997) argues that each of these three views is limited, e.g., Platonism denies the human dimension 
of mathematics while constructivism fails to explain the universality of mathematical knowledge 
(see also Stemhagen, 2009) and, therefore, he adopts a humanist stance, that is:

 � Mathematics is human – it is part of and fits into human culture.

 � Mathematical knowledge is not infallible. Like science, mathematics can be advanced by making 
mistakes, correcting and re-correcting them.
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 � There are different versions of proof and of rigour depending on time, place and other things.  
For example, the use of computers in proof is a recent phenomenon.

 � Mathematical objects are a distinct variety of social-historic objects. Like literature or religion, 
they are a special part of culture. (ibid., p. 22)

From this perspective, mathematical entities derive from the needs of everyday life (e.g., in science 
or technology) and have no meaning beyond that ascribed to them by a shared human consciousness. 

Since the 1980s, there has been considerable interest in the relationship between teachers’ 
conceptions of mathematics and their pedagogical practices (e.g., Dossey, 1992; Ernest, 1989; 
Leder, Pehkonen, & Törner, 2003). Ernest (1989) argues that a teacher’s conceptions or set of beliefs 
about the nature of mathematics as a whole forms the basis of his/her philosophy of mathematics. 
However, these conceptions are not necessarily consciously held views or fully articulated 
philosophies. Drawing on the work of Thompson (1984), Ernest (1989) identified three conceptions 
of mathematics held by teachers:

1. Platonist: view of mathematics as a static but unified knowledge that can be discovered rather 
than created.

2. Problem-solving: view of mathematics as on-going enquiry and coming to know.

3. Instrumentalist: view of mathematics as a ‘bag of tools’ made up of utilitarian facts, rules and skills.

These conceptions of mathematics align with philosophies of mathematics as described above 
(Dossey, 1992; Ernest, 1989). They have different implications for mathematics education. Most 
notably, the view of mathematics as ‘absolute and certain’ is often perceived as eliminating learners, 
particularly women and marginalised groups, from the subject – ‘[n]ot only is the personness of the 
discipline removed, but hierarchy of knowledge and elitism of knowers construes an antagonistic 
cultural climate in classrooms’ (Burton, 2001, p. 596). On the other hand, a view of mathematics as 
co-constructed promotes student engagement and critical thinking (e.g., Povey, 2002; Stemhagen, 
2009). Since a teacher’s beliefs about mathematical content, the nature of mathematics and its 
teaching and learning are strongly associated with what he or she does in the classroom  
(e.g., Törner, Rolka, Rösken, & Sriraman, 2010), any proposed change in the curriculum rests on 
addressing these beliefs. 

A Definition of Mathematics Education

According to Valero (2009), mathematics education can refer to two different domains: a field of 
practice where people engage in the activities connected to the teaching and learning of 
mathematics and a field of study which is the space of scientific enquiry on and theorisation about 
the field of practice. It is his contention that the field of study defines the field of practice and since 
the former is often focused on the relationship between teacher, learner and mathematical content, 
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broader social, cultural and political factors are overlooked. He argues for broadening the scope  
of mathematics education:

Let us think about mathematics education as a field of practice covering the network of 
social practices carried out by different social actors and institutions located in different 
spheres and levels, which constitute and shape the way mathematics is taught and learned 
in society, schools and classrooms…This broader definition of the field evidences the social, 
political, cultural and economic dimensions that are a constitutive element of mathematics 
education practices. (p. 240)

Current views of mathematics education are inextricably linked with ideas about equity and access 
(Bishop & Forganz, 2007) and reflect this broader scope. In attempting to define mathematics 
education, one is forced to consider questions such as ‘What mathematics?’ and ‘Mathematics for 
whom?’ and ‘Mathematics for what purpose?’. Bishop (1988, as cited in Bishop & Forganz, 2007), in 
seeking to answer the first of these questions, differentiates between Mathematics with an upper-case 
M and mathematics with a lower-case m, both of which, in his view, should be addressed by schools. 
He regards the former as the universal mathematics that is the basis of mathematics curricula in 
schools, while the latter refer to a wider mathematical knowledge that is used in everyday life in a 
particular society or culture. Current views of mathematics education assume that we are talking 
about mathematics education for all children. In clarifying the meaning of ‘mathematics for all’, 
Clements, Keitel, Bishop, Kilpatrick & Leong (2013) suggest that it is ‘the kind of goal that anticipates 
a world in which all people have the opportunity to learn, and benefit from learning, mathematics’  
(p. 8). In response to the third question, the purposes of learning mathematics in schools are now 
seen as twofold: the preparation of mathematically-functioning citizens of a society and the 
preparation of some for future careers in which mathematics is fundamental. Bishop and Forganz 
(2007) state that, from an equity perspective, no one should be denied access to participation along 
this path. Clements et al. (2013) draw attention to the fact that, in learning mathematics, conditions 
and context are crucial. They, in common with others (e.g., van den Heuvel-Panhuizen, 2003), 
reiterate the fact that mathematics is a cultural phenomenon and that the forms of mathematics in 
schools should ‘arise out of, and are obviously related to, the needs of learners, and the societies  
in which they live’ (Sriraman & English, 2010, p. 33).

Numeracy

Numeracy is a term having a range of different definitions, many of which encompass the equity and 
access ideals of ‘mathematics for all’ and ideas related to competent citizenship (Bishop & Forganz, 
2007). Clements et al. (2013) suggest that the concept of numeracy, while still ill-defined, has gradually 
been extended over the years ‘beyond purely arithmetical skills to embrace not only other elementary 
mathematical skills but also affective characteristics such as attitudes and confidence’ (p. 32). 



35
Chapter 1 

Defining Mathematics Education 

Bishop and Forganz (2007) suggest a number of possible relationships between mathematics and 
numeracy:

1. Mathematics and numeracy intersect, that is they share aspects but do not include each other.

2. Numeracy is a subset of mathematics.

3. Mathematics is a subset of numeracy.

4. Numeracy is mathematics.

5. Mathematics and numeracy are two very different phenomena, having no relationship. 

The term numeracy has been used in recent years by a number of governments, including those of 
Canada, Australia and Ireland, to describe aspirations for aspects of mathematics learning including 
quantitative literacy. Numeracy, as it is generally envisaged in such statements, is seen as something 
which is not limited to the ability to use numbers, but, for instance, as ‘the capacity, confidence and 
disposition to use mathematics to meet the demands of learning, school, home, work, community 
and civic life’ (DES, 2011, p. 9). This is very similar to that used by the Australian Association of 
Mathematics Teachers (AAMT, 1998) which states that ‘To be numerate is to use mathematics 
effectively to meet the general demands of life at home, in paid work, and for participation in 
community and civic life’ (p. 2).

The statement from AAMT goes on to describe the place of numeracy in the curriculum:

In school education, numeracy is a fundamental component of learning, discourse and 
critique across all areas of the curriculum. It involves the disposition to use, in context,  
a combination of:

• underpinning mathematical concepts and skills from across the discipline (numerical, 
spatial, graphical, statistical and algebraic);

• mathematical thinking and strategies;
• general thinking skills; and
• grounded appreciation of context. (p. 2)

This suggests a view of numeracy as involving the use of mathematics, but not as the same as 
mathematics. The DES definition above is in the same vein. It seems then that both the DES 
definition and that from AAMT correspond with a view of numeracy as a subset of mathematics, 
Option 2 in the Bishop and Forganz list above. We conclude then that the definitions offered above 
are not talking about mathematics per se but rather about a subset of mathematics which is 
developed in school education. While the development of numeracy is important, education at all 
levels should encompass a broader view of mathematics. 
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Defining Mathematics Education for Children Aged 3–8 Years

Aistear defines numeracy as ‘developing an understanding of numbers and mathematical concepts’ 
(2009a, p. 56). It views mathematical literacy, whereby children learn to communicate using the 
mathematics sign system, as part of being literate. Perry and Dockett (2008) argue that numeracy, 
mathematical literacy and mathematics go hand-in-hand in early education settings because young 
children’s learning takes place in the context of holistic learning experiences and in contexts that are 
part of their day-to-day lives:

The contextual learning and integrated curriculum apparent in many early childhood – 
particularly prior-to-school settings – ensures that there is little distinction to be drawn 
between numeracy, mathematical literacy and aspects of mathematical connections with 
the children’s real worlds. (p. 83)

Concepts of number and operations with numbers are identified as being at the heart of mathematics 
for young children (NRC, 2001). But prior to children developing concepts about number, mathematical 
thinking begins for all children with comparisons of quantity and the development of an understanding 
of quantity (e.g., Griffin, 2005; Sophian, 2008). This does not mean though, that curricula for early 
childhood should be limited to the topic of number. Rather, as children are gradually introduced to 
mathematics in early education settings, it should address the range of mathematical ideas that all 
children need to engage with in order to reach their potential in their mathematics learning. It should 
also encompass all of the topics of shape and space/geometry and measure, data, and algebra  
(e.g., Saracho & Spodek, 2008; Ginsburg, 2009a; Clements & Sarama, 2004). 

There are now a number of sources that educators can look to for advice on what principles should 
guide mathematics education for young children. These include statements from The National 
Association of Educators of Young Children (NAEYC) in the United States who joined forces with the 
National Council of Teachers of Mathematics (NCTM) to issue a position paper (2002/2010) on early 
childhood mathematics. Similarly, in Australia Early Childhood Australia and the Australian Association 
of Mathematics Teachers set out their position on what mathematics education for young children 
should be (AAMT/ECA, 2006). General principles which should underpin pedagogy/practice are 
explored in Report No. 18, Chapter 1, Sections: Principles that Emphasise People, Relationships and 
the Learning Environment and Principles that Emphasise Learning.
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A Key Aim of Mathematics Education: Mathematical Proficiency 

Mathematical proficiency has been adopted as a key aim in policy documents on mathematics in 
many countries, for example, the US (CCSSM/NGA, 2010), New Zealand (Anthony & Walshaw, 
2007) and Australia (National Curriculum Board, 2009). Mathematical proficiency comprises the 
following five interwoven strands (NRC, 2001, pp. 116–133):

 � conceptual understanding – comprehension of mathematical concepts, operations, and relations

Individuals who have a conceptual understanding of mathematics know more than isolated facts.  
They have an integrated grasp of mathematical ideas and know why and in what context the ideas are 
applicable. They make connections between ideas, thus allowing them to retain facts and procedures. 

 � procedural fluency – skill in carrying out procedures flexibly, accurately, efficiently, and appropriately

Individuals who are procedurally fluent in the domain of number are able to analyse similarities and 
differences between methods of calculating. These methods include written procedures, mental 
methods and methods that use concrete materials and technological tools.

 � strategic competence – ability to formulate, represent, and solve mathematical problems

Individuals who are strategically competent have the capacity to form mental representations of 
both routine and non-routine problems, and detect mathematical relationships, and are flexible in 
their problem-solving approaches. Strategic competence depends upon and nurtures both 
conceptual understanding and procedural fluency.

 � adaptive reasoning – capacity for logical thought, reflection, explanation, and justification

A hallmark of adaptive reasoning is the justification of one’s work. This justification can be both 
formal and informal. Individuals clarify their reasoning by talking about concepts and procedures 
and giving good reasons for the strategies that they are employing. Such justification is supported 
by collaboration with others and by the use of physical and mental representations of problems.

 � productive disposition – habitual inclination to see mathematics as sensible, useful, worthwhile, 
coupled with a belief in diligence and one’s own efficacy.

Individuals who have a productive disposition believe that mathematics is useful and relevant. They 
do not regard mathematics as being for the ‘elite few’ but rather as a subject in which all can enjoy 
success if they make appropriate effort.
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Key to the development of mathematical proficiency is the interdependence and interconnection 
among the strands, demonstrated in Figure 1.1.

Figure 1.1: Intertwined Strands of Proficiency. 
From Adding It Up: Helping Children to Learn 
Mathematics. National Research Council (NRC) 
(2001, p. 5). Mathematics Learning Study 
Committee, Center for Education, Division of 
Behavioral and Social Sciences and Education. 
Washington, DC: The National Academies 
Press. 

 

Given the breadth and depth of the concept of mathematical proficiency, we support its inclusion as 
a key aim for the revised curriculum. As we understand it, individuals become mathematically 
proficient over their years in educational settings. Each of the strands becomes progressively more 
developed as children’s mathematical experiences become increasingly sophisticated. 

As described above, mathematical proficiency is developed through engagement with processes 
such as communicating, reasoning, argumentation, justification, generalisation, representing, 
problem-solving, connecting and communicating. All of these are encompassed in the overarching 
concept of mathematization (Bonotto, 2005; NRC, 2009). Below, we introduce some ways in which 
the concept of mathematization is defined in the literature.

Mathematization

The Realistic Mathematics Education (RME) movement is illustrative of how a particular perspective 
on mathematics suggests a particular way of conceptualising mathematics education. Freudenthal 
(1973) thought of mathematics not as a body of knowledge that had to be transmitted but as a form 
of human activity. For him, the learning of mathematics meant involving children in ‘mathematization’ 
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where, with appropriate guidance, they would have the opportunity to reinvent mathematics. Central 
to his learning theory was the notion of level-raising where what might be known informally at one 
level becomes the object of scrutiny at the next level. Treffers (1987) expands on level-raising by 
formulating the ideas of ‘horizontal’ and ‘vertical’ mathematization. In horizontal mathematization, 
the learner develops mathematical tools or symbols that can help to solve problems situated in 
real-life contexts. In vertical mathematization, the learner makes connections between mathematical 
concepts and strategies, that is, she or he moves within the world of mathematical symbols. 

In the United States, the NRC report (2009) addressed the connection between mathematizing and 
mathematical processes:

Together, the general mathematical processes of reasoning, representing, problem solving, 
connecting, and communicating are mechanisms by which children can go back and forth between 
abstract mathematics and real situations in the world around them. In other words, they are 
a means of both making sense of abstract mathematics and for formulating real situations in 
mathematical terms – that is, for mathematizing the situations they encounter. (p. 43) 

Mathematizing happens when children can create a model of the situation by using 
mathematical objects (such as numbers or shapes, mathematical actions (such as counting 
or transforming shapes), and their structural relationships to solve problems about the 
situation. For example, children can use blocks to build a model of a castle tower, 
positioning the blocks to fit with a description or relationships among features of the tower, 
such as a front door on the first floor, a large room on the second floor, and a lookout tower 
on top of the roof. Mathematizing often involves representing relationships in a situation so 
that the relationships can be quantified. (p. 44)

Ginsburg (2009a) argues that early childhood mathematics education should focus on mathematization. 
In his view, the educator’s role is to support children in their efforts to mathematize. This involves 
‘helping them to interpret their experiences in explicitly mathematical form and understand the 
relations between the two’ (p. 415). Often this support is offered in the course of everyday activities. 
The process of mathematization is also emphasised by others as a key aspect of early mathematics 
education (e.g., Perry & Dockett, 2008). 

It follows then that mathematization fosters mathematical proficiency and so should be a key focus 
of early mathematics education. 
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Conclusion

High-quality mathematics education for children aged 3–8 years is predicated on opportunities for 
rich engaging interactions with knowledgeable educators who challenge children to think and 
communicate mathematically. They offer support for children’s mathematizing, for their constructions 
of a good number sense and for their developing understandings of critical mathematical ideas. 
Educators use their knowledge of mathematics, of children’s learning and of mathematics pedagogy 
to introduce children gradually to a structured curriculum which emphasises the development of 
mathematical proficiency. However, the implementation of such a curriculum is strongly linked not 
only to a teacher’s beliefs about and attitudes towards mathematics, but also to those of the 
broader social arena. In particular, a view that mathematics is a human endeavour, deriving from 
the needs of everyday life, underpins the notion of ‘mathematics for all’. Changes in the 
mathematics curriculum, therefore, depend on stakeholders in education engaging in conversations 
about mathematics education and its key aims and goals.

The key messages arising from this chapter are as follows:

 � Mathematics is no longer considered to be a fixed, objective body of knowledge. Rather it 
comprises a number of social practices that are negotiated by the learner and teacher within the 
broader social, political and cultural arena. A teacher’s conceptualisation of mathematics and 
what it is to do mathematics have strong influences on pedagogic practices.

 � Current views of mathematics education are inextricably linked with ideas about equity and 
access. While the development of numeracy is important, a broad interpretation of mathematics 
should underpin efforts towards curricular reform in Ireland. A broad perspective is coherent with 
a view of mathematics as a human, socially-constructed and creative endeavour. 

 � Given the breadth and depth of the concept of mathematical proficiency, we propose that it be 
adopted as a key aim of the mathematics curriculum. It is promoted through engagement with 
processes such as connecting, communicating, reasoning, argumentation, justifying, representing, 
problem-solving and generalising. All of these are encompassed in the overarching concept of 
mathematization. Thus mathematization should be a key focus of mathematics education.



Theoretical Perspectives

ChapteR 2
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For many years psychological perspectives dominated conceptions of how 
children learn mathematics. A major development in the 1990s occurred 
with the social turn in mathematics education research (Lerman, 2000).  
This resulted in the increasing use of sociocultural theories to explain 
mathematical learning and development and a move away from seeing 
learning as acquisition of knowledge, to seeing learning as the 
understanding of practice (in this case, the practice of doing mathematics). 
In addition, a number of new perspectives have become visible recently, 
including social justice theory, networking theories and semiotics to name 
but a few. The emergence of all of these new ways of thinking about 
mathematics learning and the factors that influence it means that it is 
increasingly challenging to explain mathematics learning by reference to a 
narrow range of theories. Consequently, from the point of view of 
mathematics educators, a wide range of theories serve to explain children’s 
mathematical learning and development and to influence mathematics 
education (e.g., Sriraman & Nardi, 2013). 

Learning in early childhood, as at any age or stage of life, is generally considered to be a complex 
process not easily explained by a single theory or perspective (e.g., Dunphy, 2012). Within the field 
of early childhood education, social constructivist perspectives take account of the central role of 
social interaction in shaping learning. Sociocultural theories of learning, in addition to the social 
aspect, also consider culture and cultural influences as centrally important to learning. Cognitive 
perspectives arising from, for example, constructivist theories, are also useful because they 
emphasise the active, constructivist nature of human learning and development and the idea that 
we each construct our own learning. 

In International Trends in Post-Primary Mathematics Education for the NCCA, Conway and Sloane 
(2005) identified three main theoretical perspectives on learning that have had a significant impact 
on mathematics education over the past hundred years. These included behavioural, cognitive and 
sociocultural theories. Behaviourist theories (which emphasise behaviour modification via stimulus 
response and selective reinforcement), while still influential in certain teaching practices, are no 
longer influential in mainstream mathematics research. 
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In this chapter we propose to build on Conway and Sloane’s work by discussing sociocultural and 
cognitive perspectives as they pertain to young children’s mathematical learning and development. 
These perspectives are central since they are the main perspectives underpinning recent significant 
research and developments in early childhood mathematics. The developments we refer to are 
discussed in both this report and Report No. 18. They include the current attention being given to 
curriculum goals (see Chapter 4 in this report; Report No. 18, Chapter 3, Section: Curriculum Goals), 
learning and teaching paths in early childhood mathematics (see Chapter 5 in this report; Report 
No. 18, Chapter 3, Section: Content Areas), as well as developments in pedagogy and assessment 
(see Chapter 6 in this report; Report No. 18, Chapter 2, Section: Meta-Practices). These 
developments and their implications for the revision of the mathematics curriculum are discussed in 
later sections of this report. We also draw attention to the theory of constructionism, a theory of 
learning which takes cognisance of the role of cultural tools while also being consistent with 
cognitive and sociocultural theories. Constructionism’s importance in this report is that it underpins 
the discussion in Report No. 18 of the use of ICT in the curriculum (see Report No. 18, Chapter 2, 
Section: Digital Tools). 

In terms of mathematics learning and development, when the intention is to consider the progress 
and activity of individual learners a social constructivist/cognitive perspective is helpful, but when 
the intention is to focus, on, for example, teaching practices, a sociocultural perspective is 
appropriate. Cobb and Yackel (1996) support this pragmatic view and emphasise the use of the 
perspective which is most helpful for the purpose:

The sociocultural approach…focuses on the social and cultural bases of personal experience, 
whereas analyses developed from the emergent [cognitive] perspective account for the 
constitution of social and cultural processes by actively cognisizing individuals. (p. 188)

By focusing on cognitive and sociocultural perspectives, we provide ourselves with different lenses 
with which to view mathematics learning and the pedagogy that can support it. Speaking of how 
theory is used to investigate and explain the complexity of human learning of mathematics, Lerman 
(1998) describes different perspectives as the zoom of a lens. The focus can be on mathematical 
tasks, representations and inscriptions, on problems and problem-solving, on the individual or the 
group, on the interactions between them, on communication and gesture and all the contexts in 
which these occur.

Sociocultural Perspectives

Sociocultural theories emphasise the social and cultural as inseparable contexts in which learning 
can be understood. They are sometimes referred to as cultural-historical theories, in order to explain 
the role that the past is seen to play in present culture and in social interactions. Sociocultural 
theories are increasingly the dominant framework used in early childhood education to explain 
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young children’s learning (NCCA, 2009a). Sociocultural theories include the range of Vygotskian and 
post-Vygotskian theories. Vygotskian theory argues that learning is socially mediated from the 
beginning. Notions such as ‘interactions’, ‘shared attention’ and ‘intersubjectivity’ are crucial. 
Bodrova and Leong explain that ‘A mental function exists or is distributed between two people 
before it is appropriated and internalised’ (2007, p. 79). Shared activities and shared talk are 
essential contexts within which learning occurs. Key sociocultural theorists such as Rogoff and 
Bruner also take a sociocultural approach to learning. 

Rogoff (1998, p. 691) describes learning or development as a transformation of participation.  
From her perspective, transformation occurs at a number of levels: for instance, the learner changes 
at the level of their involvement, in the role they play in the learning situation, in the ability they 
demonstrate in moving flexibly from one learning context to another, and in the amount of 
responsibility taken in the situation. Learning is seen as a process by which children change as a 
result of taking part in activity. They become more able, and they participate with increasing 
confidence in similar activities. Children change both in their understanding of the activity and in 
terms of their role in the activity. Rogoff emphasises the personal, interpersonal and community 
aspects of the learning situation. The community aspect draws attention to culture, the 
interpersonal aspect draws attention to the interactions that are part of the learning process and 
the personal aspect draws attention to transformations in individuals’ participation in activity.  
This perspective is coherent with Bruner’s views.

Bruner’s (1996) sociocultural theory of learning suggest that the process of learning is as much a 
social construction as it is an individual one – ‘human mental activity is neither solo nor conducted 
unassisted, even when it goes on ‘inside the head’ (p. xi). In his view, culture shapes minds as ‘it 
provides us with the toolkit by which we construct not only our worlds, but our very conceptions of 
ourselves and our powers’ (p. x). In seeking to understand learning, Bruner argues that

…you cannot understand mental activity unless you take into account the actual setting and 
its resources, the very things that give mind its shape and scope. Learning, remembering, 
talking and imagining: all of them are made possible by participating in a culture. (pp. x-xi) 

Agency, collaboration, reflection and culture are four crucial ideas for learning identified by Bruner. 
He emphasises the role of language in the functioning of the mind and school as a culture itself, not 
just a preparation for it. He sees interactions between the learner and more experienced others as 
crucial to learning. More experienced others scaffold learning. The tools, physical and cognitive, that 
are used by people to assist in making and sharing meaning are considered by Bruner (1966) to be 
highly significant in determining learning. Some tools enhance action, others enhance the senses 
while still others enhance thought. The expectation is that highly abstract uses of symbolic forms 
and language – both spoken and written – are generally developed in schools.
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Learners appropriate or internalise cultural tools (e.g., language, computers, numbers) to their own 
activity. Internalisation means ‘knowing how’, while appropriation means taking a tool and making 
it one’s own. However, in terms of learning mathematics, this doesn’t mean appropriation of the 
ideas of others: rather it means learners gradually transform initial ideas into fully-developed 
mathematical concepts under the influence of interaction with adults. From the sociocultural 
perspective, there is a back and forth relationship between notations-in-use and mathematical 
sense making, ‘cultural conventions such as notational systems…shape the very activities from 
which they emerge, at the same time that their meanings are continuously transformed as learners 
produce and reproduce them in activity’ (Meira, 1995, p. 270). In early childhood, children initially 
develop their own marks and representations to communicate their mathematical thinking. These 
mathematical graphics can include, for example, scribbles, drawings and invented symbols and 
perhaps numerals and letters. Critically, these lay down the foundations for the later use of standard 
forms of written mathematics (Carruthers & Worthington, 2006). Perry and Dockett (2008) suggest 
that children develop their own symbol systems first, and use this knowledge until another, more 
standardised system, can be taken on board. Interactions with more knowledgeable others are 
particularly important since it is as a result of interactions about the meanings of marks and symbols 
(their own and the more conventional ones) which enable children to learn about the meaning and 
roles of mathematical symbols. This can be compared with encouraging young children to use their 
own strategies and methods to solve mathematical problems. Hence, children can be encouraged to 
use their own language, at least in stages where their concepts are being formed. 

A Cultural-Historical Activity Theory Perspective 

Activity theory is a development of aspects of Vygotsky’s work (e.g., Engerström et al., 1999). Modern 
developments of activity theory are known as cultural-historical activity theory (CHAT) and these are 
characterised as a framework rather than as a theory with a set of neat propositions (Roth & Lee, 
2007). Activity theory has been influential, particularly in relation to language, language learning and 
literacy but its implications for mathematics learning are only now being articulated. The framework 
focuses on culture, diversity, multiple voices, communities and identity (Ryan & Williams, 2007).  
It focuses on the joint activity in the learning situation, rather than on individual learners: ‘a communal 
activity shared by a group typically has a communal ‘object’. In schooling we might say the object is 
the ‘task’ to be carried out by the children and teacher’ (p. 162). Activity theorists claim that making 
activity the focus results in a holistic view of learning (e.g., Roth & Lee, 2007, p. 218). Children use 
tools such as language, a particular action or resource to mediate knowledge in interactions with 
others. Ryan and William see potential in the way CHAT helps us to view the relationships between 
everyday activity and school mathematics and the role that everyday mathematics can play as a 
boundary object between the two. It also has potential for offering opportunities for shared learning 
and for the analysis of how this affects individual learning (Roth & Lee, 2007). 
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A Situative Perspective

Situative cognition sees understanding as situated in the body, in space and time, as well as socially 
and culturally. For instance, Ryan and Williams (2007) describe how situative theorists (e.g., Lakoff  
& Nunez, 2000) have analysed the number line from an embodied cognition point of view and how 
those authors see the number line as a particularly powerful model in that ‘it allows the learner to 
situate themselves bodily and spatially in the mathematics in a powerful way’ (p. 19). For example, 
young children can explore number relations and operations on a floor number line, by moving 
themselves forward and back on the line. Studies of out-of-school learning have revealed the 
situated nature of mathematical practices and of mathematical learning. For example, Nunes, 
Carraher and Schliemann (1993) have compared Brazilian children’s facility with ‘street mathematics’ 
with their achievement in ‘school mathematics’. From the situative perspective, learning takes place 
in the same context in which it is applied. This implies that it is important to think about the context 
in which learning takes place, all the constraints and affordances governing the site of learning and 
the use the learner makes of these (Greeno, 1991; 1997). When situated cognitionists speak of 
context, they are referring to a social context, defined in terms of participation in social practices 
(Lave, 1988). The social engagements that enable learning are a key focus. A number of studies in 
mathematics learning have indicated that different forms of mathematical reasoning arise in the 
context of different practices (e.g., Cobb & Bowers, 1999). The implication of this is that, if 
educators wish to encourage children’s argumentation and reasoning, attention must be paid to the 
practices that are put in place to support these processes (see Report No. 18, Chapter 3, Section: 
Mathematical Processes). 

Two theorists have worked separately (Lave, 1988; Wenger, 1998) and together (Lave & Wenger, 
1991) to conceptualise a theory of learning which has given rise to notions of learning by belonging. 
They introduce the notion of legitimate peripheral participation as a pathway to learning in a 
community of practice. The practices of the community constitute what is to be known, learning is 
about participating more fully in the practices and moving from the periphery to the centre of 
practice (becoming more able). The idea that ‘developing an identity as a member of a community 
and becoming knowledgeably skilful are part of the same process, with the former motivating, 
shaping and giving meanings to the latter, which is subsumed’ (Lave, 1988, p. 65) can be used as  
a way of thinking of classrooms as mathematics learning communities. 

To summarise, there are a number of implications for early mathematics education arising from 
sociocultural theories. For instance, interaction and collaboration with others is central. Culture 
plays a key role in learning; both the culture the children bring to the setting and the culture of the 
setting. This provides the context for learning. Children’s agency is recognised, as is their strong 
interest in dialogue and discourse with others. Collaborating and establishing joint understanding 
are important. Establishing a zone of proximal development, within which to guide and support 
learning is a key task for the proactive educator. As well as scaffolding learning, the educator 
engages in the co-construction of meaning with the child, based on awareness and understanding 
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of the child’s perspective. Preschools and classrooms are seen as communities of practice where 
children learn mathematics as they engage with their teachers and peers in everyday activity in 
these settings.

Cognitive Perspectives

Cognitive theorists focus on internal cognitive structures and view learning as changes in these 
structures. Cobb (2007) emphasises cognitive psychologists’ interest in how change occurs, most 
significantly qualitative changes in learners’ mathematical reasoning. He identifies two general types 
of theories within the cognitive science tradition that relate to specific domains: theories which offer 
insights into the processes of children’s learning and theories of the development of children’s 
reasoning. 

Constructivist Perspectives

Most of the current theorising about mathematical learning and development is grounded in 
Piaget’s constructivism, a theory which emphasised the active construction of knowledge by 
learners through processes of assimilation and accommodation, in interaction with the environment. 
During the 1970s and 1980s, the Piagetian influence on mathematics education was enormous 
(Anderson, Anderson, & Thauberger, 2008). Through these decades various forms of constructivism 
were developed and there were ensuing conflicts, challenges and efforts at synthesis. Fosnot 
(1996), drawing from the work of various theorists, defines constructivism as 

a theory about knowledge and learning; it describes both ‘knowing’ and how one ‘comes to 
know’. Based on work in psychology, philosophy and anthropology, the theory describes 
knowledge as temporary, developmental, non-objective, internally constructed, and socially 
and culturally mediated. Learning from this perspective is viewed as a self-regulatory 
process of struggling with the conflict between existing personal models of the world and 
discrepant new insights, constructing new representations and models of reality as a human 
meaning-making venture with culturally developed tools and symbols, and further 
negotiating such meaning through cooperative social activity, discourse and debate. (p. ix)

The use of the metaphor of learning as a process of construction has been traced from Vico’s 18th 
century philosophical writings, to those of Kant in the 19th century. More recently, theorists such as 
Von Glasersfeld (1984) and Steffe (1992) were seen as radical constructivists due to their more 
radical views of learning when compared with those of Piaget. From the perspective of radical 
constructivists, learning is seen as self-regulation and self-organisation (e.g., Hufferd-Ackles, Fuson 
& Sherin, 2004). Since radical constructivism rejects the notion of an external, independent, 
objective reality, one aspect of individual learners’ organisation is the world they construct through 
their experience, i.e. individuals construct their own ways of knowing (Von Glasersfeld, 1989). 
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Another important form of constructivism is the social constructivism of Ernest (1991) and 
colleagues. This is based on three grounds: linguistic knowledge, conventions, and rules form the 
basis for mathematical knowledge; interpersonal social processes are needed to turn an individual’s 
subjective knowledge into accepted objective knowledge; objective knowledge is understood to be 
social (Sriraman & Haverhals, 2010). Socioconstructivists see as complementary the social and 
cognitive aspects of knowledge construction, explaining learning by drawing from both 
perspectives. Differences in the various forms of constructivism essentially revolve around the 
interplay between subjective and objective knowledge (Sriraman & Haverhals, 2010). 

The psychological constructivist view of how children learn mathematics is, according to Battista (2004):

determined by the elements and organisation of the relevant mental structures that the 
students are currently using to process their mathematical worlds…To construct new 
knowledge and make sense of novel situations, students build on and revise their current 
mental structures through the processes of action, reflection and abstraction. (p. 186)

This conception of learning mathematics is the one which underpins the learning trajectories 
literature which is reviewed in Chapter 5 in this report. 

Various attempts have been made to derive teaching approaches coherent with constructivist 
perspectives. For instance, Jaworski (1992) proposed three elements inherent in constructivist 
mathematics teaching: the provision of a supportive learning environment; offering appropriate 
mathematical challenge; and nurturing processes and strategies that foster learning. Constructivist 
teaching techniques are sometimes associated with ‘discovery methods’ and often contrasted with 
the explicit presentation of information to learners (e.g., Sweller, 2009). One critique of 
constructivist approaches is that they offer minimal guidance to learners (e.g., Kirschner, Sweller,  
& Clark, 2006), but this is disputed by proponents of such approaches. Duffy (2009) argues that in 
fact the difference in constructivist and explicit instruction approaches resides not in how or indeed 
how much guidance they offer to learners, but in their conception of the stimulus for learning.  
He considers that this is not addressed in explicit instruction approaches but in contrast is seen as 
central in constructivist approaches. That stimulus for constructivists is the need for learners to 
understand, to make sense of what it is they encounter. 

Constructionism is a theory of learning which takes cognisance of the role of cultural tools, while 
also building on constructivism and sociocultural theories. Below we explore how this perspective 
underpins recent developments in digital learning and in the use of digital tools for learning. 

Constructionism

The core concern of sociocultural theories is the mediated nature of all human activity through 
interactions with others around tasks and activities and with material and symbolic tools. From this 
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perspective, ‘tools’ are conceived in a broad sense, including not only physical artefacts but also 
symbolic resources such as those of natural language and technical procedures such as mathematical 
algorithms. Cultural tools, whether physical or symbolic, are considered to influence the ways in 
which people interact with and think about the world. Bruner (1973, p. 22) saw thinking as the 
‘internalisation of ‘tools’ provided by a given culture’ while Vygotsky (1978) saw changes in tools as 
bringing about changes in thinking, with these changes in turn associated with changes in culture. 

Digital technologies are the cultural tools of today’s digitised society. Their role as mediators of 
human learning is increasingly more complex when one considers the range and scope of 
computational tools currently available. As mediating tools, they function as intellectual partners 
with learners in order to enable them to think in ways that otherwise they would not or could not. 
They amplify, extend and enhance human thinking processes, thus offering a cognitive tool to 
engage and facilitate cognitive and metacognitive processing (Jonassen, Peck & Wilson, 1999). 
Jonassen (1996) uses the term ‘mindtools’ to highlight the power of digital technologies to support 
knowledge construction and critical thinking. Building on the concept of distributed cognition 
(Salomon, 1993), he argues that digital technologies should not support learning by attempting to 
instruct learners but rather should be used as knowledge construction tools that students can learn 
with, not from. In this way, learners can be perceived as designers, using the technologies as tools 
for analysing the world, accessing information, interpreting, organising and constructing their 
personal knowledge, and representing what they know to others (Jonassen & Reeves, 1996; 
Jonassen, Peck & Wilson, 1999). 

Constructionism is a theory of learning which takes cognisance of the role of cultural tools, while 
also building on constructivism and sociocultural theories. Papert (1993), who worked with Piaget in 
the late 1950s and early 1960s, developed this theory of learning based upon Piaget’s 
constructivism. He states: 

constructionism, my personal reconstruction of constructivism, has as its main feature the 
fact that it looks more closely than other -isms at the idea of mental construction. It 
attaches special importance to the role of construction in the world as a support for those in 
the head, thereby becoming less of a purely mentalist doctrine. (p. 143) 

Papert and Harel (1991, p. 1) further explain how constructionism relates to constructivism with the 
statement that ‘the N word as opposed to the V word – shares constructivism’s connotation of 
learning as ‘building knowledge structures’. Learners, consequently, are understood as active 
builders of their own knowledge and learn with particular effectiveness when they are engaged in 
constructing personally meaningful artefacts. However, constructionists argue that learning 
‘happens especially felicitously in a context where the learner is consciously engaged in the 
construction of a public entity whether it’s a sand castle on the beach or a theory of the universe’ 
(ibid, 1991, p. 1). 
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In this sense, constructionism ‘is interested in how learners engage in a conversation with [their 
own or other people’s] artefacts, and how these conversations boost self-directed learning, and 
ultimately facilitate the construction of new knowledge’ (Ackermann, 2001, p. 85). 

In our digitised society, from a mathematical perspective, artefacts can include designing and building 
computer programs, databases, animations or robots. These artefacts are ‘objects to think with’ (Papert, 
1980, p. 12; Turkle, 1995). Through their use, learners are enabled to manipulate and reflect on what 
they know, and use these reflections to further construct knowledge (Reeves, 1998). They are also a 
means by which others can become involved in the thinking process. The learner’s thinking benefits 
from interaction with others as the multiple views and discussions that result from such interactions are 
the greatest source of alternative views needed to stimulate new learning (Von Glasersfeld, 1989). In 
this way, learners become more engaged in constructing personal and socially-shared understandings of 
the phenomena they are exploring (Jonassen & Carr, 2000). It follows that the tools and materials used 
influence the nature of the artefact and therefore the thinking. According to Butler (2007, p. 64), ‘There 
is consequently an interrelatedness of a symbiotic nature that exists between learners, the materials they 
use and the constructed artefact that they create’. This becomes their ‘object to think with’.

Using digital technologies to construct personally meaningful artefacts enables learners to design 
their own representations of knowledge rather than absorbing representations preconceived by 
others. As stated by Jonassen and Carr (2000), they ‘engage learners in a variety of critical, 
creative and complex thinking such as evaluating, analyzing, connecting, elaborating, 
synthesising, imagining, designing, problem-solving and decision making’ (p. 168). As such, 
children not only engage more deeply with content but they can also access powerful 
mathematical ideas hitherto considered not possible. For example, dynamic geometric software 
(DGS) programs are tools that can be used to construct and manipulate geometric objects and 
relations (Battista, 1998; Healy & Hoyles, 2001). Erbas and Aydogan Yenmez (2011) claim that 
DGS has great potential to impact the teaching and learning of school geometry, particularly if 
used in a reflection-centred and problem-solving based learning environment. According to 
Battista (2001), DGS enables children to ‘develop rich mental models’ which help them ‘to reason 
in increasingly sophisticated ways’ (Battista, 2001, p. 118) moving them ‘to higher levels of 
geometric thinking’ (Olkun, Sinoplu, & Deryakulu, 2005, p. 11).

To illustrate this, a triangle constructed using DGS will not be a static triangle fixed in space. It can 
be manipulated to make any desired triangle that fits on the screen, no matter what its shape, size 
or orientation (Forsythe, 2007). By constructing different triangles and observing the changes in a 
dynamic manner, the learner is exploring the properties of shape and is not confined to the use of 
textbooks and commercial sets of 2-D shapes which tend to reinforce visual prototypes (Pengelly, 
1999; Frobisher, Frobisher, Orton, & Orton, 2007). A reliance on visual prototypes is characteristic of 
those operating at Level 0 on the van Hiele geometric reasoning levels. Seventy percent of students 
leave primary education with a dominant geometric reasoning level of ‘0’ (Battista, 1998) instead of 
a recommended level two (Van de Walle, Karp, & Bay-Williams, 2010). However, while these tools 
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have the potential to transform ‘mental functioning in fundamental ways’ (Chu & Ju, 2010, p. 65),  
it is imperative that they are used in learning environments that encourage thoughtful reflection 
(Hannafin et al., 2001; Reynolds & Harel-Caperton, 2011). Consequently, a key role of teachers is to 
foster the development of a reflective culture in their classrooms (McKenzie, 1998). Thus, 
constructionism provides a particular perspective on how the use of digital tools impacts children’s 
mathematical thinking and reasoning and promotes the development of their understandings. 

A Redeveloped Primary School Mathematics Curriculum 

The 1971 mathematics curriculum, Curaclam na Bunscoile (Department of Education, 1971), drew 
heavily on Piagetian ideas, in particular on stage theory. The more recent PSMC (Government of 
Ireland, 1999) espoused a social constructivist view as evidenced in the emphasis on the social 
aspects of learning. As discussed in the Introduction to this report, when it was introduced in 1999, 
the PSMC was well received. While maintaining some important links with the 1971 curriculum, it 
also drew heavily on Vygotskian ideas about teaching and learning, in that it emphasised the social 
aspects of mathematics development, the importance of language in acquiring mathematical 
knowledge, and the key role of the teacher in modelling and supporting children’s emerging 
understanding of mathematics. However, the role of the mathematics curriculum in the minds of 
teachers is an issue that needs some thought. The issue is how the theoretical underpinnings of the 
curriculum are commensurate with classroom practice. There is ample evidence that textbooks are 
used as the main planning tool for the teaching of mathematic in many classrooms (e.g., Eivers et 
al., 2010; Dunphy, 2009). The design of textbooks, which include pages of repetitive work with 
barely discernible levels of ascending difficulty (e.g., the repeated practice of addition of two digit 
numbers without ‘carrying’ followed later by addition ‘with carrying’ is at variance with the 
emphases suggested in the current chapter). Similarly, an understanding of mathematics as largely 
symbolic and the learning of mathematics as the manipulation of symbols is not coherent with, for 
instance, the embodied stance of Lakoff and Nunez (2000). An embodied stance is where an idea is 
expressed or represented physically or concretely. It assumes that young children often communicate 
and articulate their understandings and ideas by using actions and gestures instead of/as well as 
words. It might be claimed that the predominance of coloured pictures in current mathematics 
textbooks has been influenced by ‘situated learning’ theories, where context is an important basis 
for learning mathematics. However some of these have been critiqued by Charalambous, Delaney, 
Hsu and Mesa (2010). Their findings in relation to the addition and subtraction of fractions are that: 

The Irish textbooks differed from those in the other two countries [Cyprus and Taiwan] in 
terms of the context around which the worked examples were built. Most worked examples 
in the Irish texts were set in exclusively mathematical contexts…In the other two countries, 
worked examples were more often embedded in ‘real-world’ contexts…Irish textbooks had 
the greatest number of ‘completed’ worked examples…all Irish worked examples explicitly 
illustrated the steps to be followed when completing procedures. (p. 135)
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The above authors argued that there is a need to examine textbooks in order to understand 
differences in teaching approaches and achievement in different countries. The relevance of this for 
the mathematics curriculum for children aged 3–8 is that a redeveloped curriculum needs to consider 
how the range of resources that support pedagogy cohere with the theoretical stance of the curriculum. 

Implications for Practice

Table 2.1 below outlines the key implications of the perspectives for learning, teaching curriculum 
and assessment. Of necessity, these are generalisations. It is important to note that there can be 
differences in interpretations in relation to the various perspectives, in particular the sociocultural 
perspectives. This arises from the fact that sometimes theorists who see themselves as located in 
slightly different places theoretically often use similar concepts and language to articulate their 
positions (e.g., Ryan & Williams, 2007). This makes their perspectives at times difficult to distinguish. 

Table 2.1. Key Implications of Theoretical Perspectives

Cultural-historical  
activity theory

Situative

Emphases  � The structure of activities

 � Activity as continually 
negotiated between 
participants with the 
resources of their 
environments

 � Tools can be either material 
or conceptual

 � The larger systems: includes people, interactions 
and all the elements of the environment

 � Practices of the community

 � Becoming more central in a community’s practices

Learning  � Learning is the result of 
everyday practice and 
processes of meaning- 
making

 � An expansive view of 
learning

 � Zone of proximal 
development is a key 
concept

 � Learning is a change in participation…about 
becoming more centrally involved in the practices 
of the community 

 � Changing forms of participation are part of a 
process that shape identity formation 

 � Diversity is the expectation: learning more 
multi-path in nature

 � Interpretation of artefacts such as symbols and 
icons is a crucial part of social practices



53
Chapter 2 

Theoretical Perspectives

Cultural-historical  
activity theory

Situative

Teaching  � Use of tools (for example, 
technology or symbols) as 
mediators in activity

 � The focus is on the group of learners 

 � Dialogical pedagogy of argumentation and 
discussion designed to support effective 
conceptual learning 

 � Identification of conceptual obstacles

 � Scaffolding learning using models 

 � Focus on developing mathematical skills within 
the context of real-world learning situations

 � Work with ‘rich’ mathematical problems  
e.g. problem-based learning

 � Foster a community of learners

 � Foster the development of learner identity

 � Foster metacognitive awareness

 � Teach at upper levels of ZPD

Curriculum  � Tools can be material or 
conceptual

 � Focus on processes with an emergent view on 
content

 � Mathematics situated in curriculum tasks which 
use cultural tools 

 � Mathematical activities must make sense and be 
part of a child’s larger social activity 

 � Models and representations used to solve practical 
problems

Assessment  � Expectations of difference  � Assessment of participation in meaningful 
activities 

 � Diagnosis of errors since these indicate intelligent 
constructive activity

Table 2.1. Key Implications of Theoretical Perspectives (continued)
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Social Constructivist Constructionism

Emphases  � The social context 

 � Interpersonal relations, 
especially teacher-learner 
and learner-learner 
interactions 

 � Negotiation, collaboration, 
and discussion 

 � The role of language

 � Constructions in the world as supports for 
constructions in the head

 � Tools, media and contexts

 � Artefacts as objects to think with 

 � Learners construct knowledge particularly well 
when constructing personally meaningful entities

 � Learners’ reflections and social expression about 
their work in progress…in a community of 
practice

 � Tool use has the potential to transform mental 
functioning in fundamental ways when combined 
with thoughtful reflection on the learning process

Learning  � Learning is a change in 
understanding/thinking

 � Focus on qualitative  
changes in reasoning

 � Importance of children 
reflecting on their work

 � Learner sets their own learning goals

 � Emphasises the idea of diversity, recognises that 
learners can make connections with knowledge in 
many different ways 

 � Encourages a variety of learning styles and 
representations of knowledge 

 � Intimate connection between knowledge and 
activity

 � Active process that involves individuals asking 
questions, discussing and solving problems, 
sharing ideas, thinking critically and exploring and 
assessing what they know.

Teaching  � The focus is on individual 
learners 

 � Teacher modelling  
important 

 � Present cognitive challenge 

 � Strategic learning 
encouraged

 � Encourage self-regulation  
of learning

 � Learning environment fosters discussion and 
reflection 

 � Learning environment designed to provide 
opportunities for inquiry-based explorations, 
collaboration and reflection using a range of 
computational tools

 � Foster self-regulation 

 � Foster the development of a reflective culture

 � Foster culture of collaboration among peers

 � Reflection/articulation 

 � Foster meta-cognitive awareness 

 � Teacher, or knowledgeable other, participating in  
the learning process alongside the learner, cueing, 
prompting, questioning where necessary

Table 2.1. Key Implications of Theoretical Perspectives (continued)
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Social Constructivist Constructionism

Curriculum  � Focus on conceptual 
understanding 

 � Tasks/activities are 
incremental and build on 
what children already know 

 � Artefacts used serve to 
influence thinking

 � Meaningful, authentic activities that help the 
learner to construct understandings and develop 
skills 

 � Long term problems/projects related to the 
learner’s needs and interests

 � Authentic relevant real-world problems 

 � Learning to learn/thinking about thinking

Assessment  � Problem-focused

 � Authentic tasks focused on  
a wide range of cognitive 
behaviours (lower and  
higher order) 

 � Aimed at eliciting expertise

 � Encourage learners to make predictions and to 
constantly reflect on discrepancies between their 
predicted answers and those found. As they do so 
they refine their theories and understandings.

In the United States, cognitive science emphases are reflected in many high-profile statements  
(e.g., NRC 2001, 2005; NCTM, 2000). They are also reflected in the work of prominent early 
childhood mathematics educators (e.g., Clements, Sarama & DiBiase, 2004). Meanwhile, in 
countries such as Australia there has been a movement amongst mathematics educators and in 
curriculum policy towards socioculturally-oriented approaches to teaching, learning, assessment and 
curriculum. See for instance Conway and Sloane’s (2005) account of changes in assessment 
practices in Victoria and New South Wales. See also Perry and Dockett’s (2008) articulation of a 
socioculturally oriented mathematics curriculum at preschool level, first presented as early as 2002. 

The PSMC (Government of Ireland, 1999) can be seen as having a socio-constructivist orientation 
which had its roots in Piagetian/radical constructivism, though there are also some adherences to  
a Vygotskian perspective. Social constructivism has two formulations, one with its roots in 
Piagetian/radical constructivism, and the other with its roots in Vygotskian theory (Ernest 2010, p. 54). 
We consider this distinction helpful in considering how the theoretical orientation of a redeveloped 
curriculum for the mathematics education of children aged 3–8 years might be distinguished from 
that of the 1999 PSMC. A new iteration of the curriculum which takes account of the sociocultural 
perspectives described above would be much more firmly rooted in recent theories developed from 
a Vygotskian base and which emphasise children’s participation in mathematics, their identity as 
mathematics learners, and their interactions in communities of learners. 

Table 2.1. Key Implications of Theoretical Perspectives (continued)
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Conclusion

In early childhood mathematics education sociocultural/cultural-historical theories are of particular 
importance, given their capacity and usefulness for explaining early learning and the role of cultural 
and social influences in learning. Recent versions of constructivism help to explain the mechanisms of 
learning and these are central to a comprehensive theory of early mathematics learning. The insights 
afforded by considering the cultural and social dimensions of the learning situation, including cultural 
tools and media, explain what children learn, why they learn in particular circumstances and how 
they learn. They also indicate clearly how early mathematical learning and development can best be 
supported. An explanatory framework recognising the role of internal processes, but foregrounding 
the fact that mathematics learning and development are dependent on children’s active participation 
in social and cultural experiences, provides the basis for a powerful theoretical framework for 
mathematics education for children aged 3–8 years. Important too we feel are the insights offered by 
the Realistic Mathematics Education (RME) approach. However, we have left our discussion of that 
until Chapter 5 (Section: Developing Children’s Mathematical Thinking: Three Approaches) since 
RME is an approach to mathematics education, rather than a ‘grand theory’ of learning.

The key messages arising from this chapter are that 

 � Cognitive and sociocultural perspectives provide different lenses with which to view mathematics 
learning and the pedagogy that can support it. Cognitive perspectives are helpful in focusing on 
individual learners, while sociocultural perspectives are appropriate when focusing on, for 
example, pedagogy.

 � Sociocultural perspectives, cognitivist perspectives and a constructionism perspective each offer 
insights which can enrich our understanding of issues related to the revision of the curriculum. 
They do so by providing key pointers to each of the elements of learning, teaching, curriculum 
and assessment. Used together, they can help in envisaging a new iteration of the PSMC. 

 � Learning mathematics is an active process which involves meaning making, the development of 
understanding, the ability to participate in increasingly skilled ways in communities of learners, 
and engagement in mathematization and the development of a mathematical identity.

 � The proactive role of the teacher must be seen to involve the creation of a zone of proximal 
development, the provision of scaffolding for learning, and the co-construction of meaning with 
the child based on awareness and understanding of the child’s perspective. It also involves a 
dialogical pedagogy of argumentation and discussion.



Language,  
Communication  
and Mathematics

ChapteR 3
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Language plays a critical role in developing young children’s mathematical 
thinking (e.g., Ellerton, Clarkson & Clements, 2000; Whitin & Whitin, 2003). 
Talking about mathematical thinking and engaging in reasoning, justifying 
and argumentation are central to mathematics education for all children 
aged 3–8 years (Ginsburg, 2009a). According to the NRC report: 

Children must learn to describe their thinking (reasoning) and the patterns they see, and 
they must learn to use the language of mathematical objects, situations and notation. 
Children’s informal mathematical experiences, problem solving, explorations, and language 
provide bases for understanding and using this formal mathematical language and notation. 
(2009 p. 43)

In his seminal work on mathematics register, Haliday (1978) argues that acquiring mathematics 
involves learning not just the vocabulary of mathematics, but also the styles of meaning, modes of 
argument, and methods of thinking mathematically. Similarly, Schleppegrell (2010) calls on 
educators to view mathematics as discourse. In this view planned activities provide opportunities to 
engage learners in such discourse, without losing a focus on the underlying mathematics. This 
perspective is consistent with sociocultural theories of mathematics learning which see children 
being enculturated into mathematics through social activity and discourse (see Chapter 2, Section: 
Sociocultural Perspectives). Perry and Dockett (2002) emphasise the value in allowing young 
children to use their own symbols and their own names for mathematical entities in the early stages 
of learning mathematics, followed by a gradual shift to more formal systems. They also draw 
attention to the challenges facing young children in settings where the discourse of mathematics 
involves a language that is different to the language of the home. 

The term ‘math talk’ is often used to describe the language interactions that occur when children 
are supported in talking about their mathematical thinking, including their formal and informal 
representations of mathematical ideas and symbols. Indeed, the NRC report (2009) notes that a 
‘math-talk learning community’, in which all children have opportunities to describe their thinking, 
has the potential to improve children’s mathematical language and their general language levels.  
It also points to the importance of children using language to make connections across different 
domains of mathematics, and across mathematics, other learning areas, and everyday life. 

The importance of oral language in developing mathematical understanding is recognised in policy 
statements and curriculum documents. For example, the NAEYC/NCTM (2002/2010) Position 
Statement on Early Childhood Mathematics (3–6 years) includes as a recommendation the active 
introduction of ‘mathematical concepts, methods and language through a range of appropriate 
experiences and strategies’ (p. 9), while taking children’s cultural background and language into 
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consideration. The same report notes the many opportunities that can arise to integrate 
mathematics with other learning activities (e.g., storytelling) which can support children in learning 
mathematical vocabulary. Aistear (NCCA, 2009a) includes, as one of the key aims of its 
Communicating theme, a broadening of children’s understanding of the world by making sense of 
experiences through language, including mathematical language. 

This chapter examines the role of language in learning mathematics. First, it looks at the relevance 
of language for learning different aspects of mathematics and the research that supports the use of 
mathematical language in children’s homes, in the preschool and in primary school. Second, it looks 
at theories of communication in mathematics learning and links them to broader theoretical frameworks 
for learning mathematics that were considered in Chapter 2. Third, it describes the development of 
children’s mathematical vocabulary in the context of broader conceptual development. Fourth, it 
considers groups who may struggle with language in general, and therefore may experience 
additional challenges in bridging the gap between informal and more formal mathematical ideas. 

The Role of Language in Developing Mathematical Knowledge 

There is a complex relationship between language development and growth in mathematical 
thinking. Even before they acquire language it seems that infants in their first year may be aware of 
changes in the numbers of items in small sets (e.g., Feigenson & Carey, 2005) and can discriminate 
between larger sets of items where the proportional difference is large (e.g., 8 vs. 16 items) 
(Brannon, Abbott & Lutz, 2004). In these early stages, there is a complex relationship between 
representation of number, and representation of associated variables such as area, size and 
arrangement of items. Moreover, such early number representations may work independently of the 
language system (e.g., Gelman & Butterworth, 2005). According to Zur and Gelman (2004), 
3-year-olds can use basic number concepts to predict and check the results of additions and 
subtractions to sets of up to five items, even if they are unable to produce such sets by counting. 

There is some disagreement among researchers as to when children integrate their number word 
knowledge (e.g., counting) with their non-verbal number systems. Carey (2004) suggests that 
language factors (including knowledge of plurals) can ‘bootstrap’ number development as they 
combine with earlier non-verbal representations of number, to provide a new and comprehensive 
number system. For example, children’s knowledge of number word sequence, which may have 
been acquired initially without numerical meaning, combines with their representations of small sets 
of items. This combination is seen as providing a basis for symbolic representation of number. 

Others (e.g., Rips, Asmuth & Bloomfield, 2008) argue that knowledge of the number word sequence 
is not sufficient to support conceptual development, and that it is only at a much later stage – 
called ‘advanced counting’ – that children can construct the next number term from any number in 
the sequence, based on the correspondence between the structure of the number sequence and the 
properties of natural numbers. This is evident in a study by Sarnecka and Carey (2008) in which 
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children aged 2 years and 10 months to 4 years and 3 months were the subjects. While almost all 
children could produce the number sequence to 10, conceptual understanding varied considerably, 
with 40% of children showing no understanding that going forward in the number sequence 
corresponds to adding, and going back to subtracting. 

Taken together, such studies suggest a need for early childhood educators to support young children 
in establishing a conceptual link between language (in this case, the number sequence) and 
understanding of number. According to Donlan (2009), the process of integrating procedures and 
concepts (e.g., rote counting and underlying principles of counting) is important.

Adult Support

As young children grow and develop so too does their familiarity with and use of language. 
Everyday situations both support and encourage children’s use of mathematically-related language, 
especially where these involve interactions with adults. 

There is evidence that the mathematical language used by adults in preschool settings can have an 
impact on children’s mathematical knowledge. In a study involving 26 preschool teachers and their 
children, Klibanoff et al. (2006) recorded instructional time, including circle time, over a seven-month 
period for one hour per month in each class. Although few teachers led planned mathematics 
lessons during the recorded observations, many incorporated mathematical inputs in their speech. 
Children were pre- and post-tested on mathematical knowledge. Children in settings in which 
teachers used many instances of math talk were more likely to improve over the course of the study 
than children in settings in which less mathematical language was used. An interesting outcome of 
the study was the wide range of mathematical inputs across settings, ranging from 1 to 104 
instances of mathematical utterances, with an average of 28. Forty-eight percent of all inputs were 
references to cardinality, while inputs relating to equivalence, non-equivalence, ordering, calculation 
and placeholding were much less common. This outcome of this study is consistent with the work of 
Dickinson and Tabors (2001), whose research with preschoolers showed that, during large-group 
activities, more frequent use of teachers’ explanatory talk and use of cognitively challenging 
vocabulary were associated with better learning outcomes for children. 

Familiarity with spatial language is particularly important in learning and retaining spatial concepts. 
Gentner (2003) found that children who heard specific spatial labels during a laboratory experiment 
that involved hiding objects (‘I’m putting this on/in/under the box’) were better able to find the objects 
than children who heard a general reference to location (‘I’m putting this here’). Moreover, this was 
true even two days later, without further exposure to the spatial language (Loewenstein & Gentner, 
2005). Szechter and Liben (2004) observed parents and children in the lab as they read a children’s 
book with spatial-graphic content. They found an association between the frequency with which 
parents drew children’s attention to spatial-graphic content during book reading (e.g., ‘The Rooster 
is really tiny now’) and children’s performance on spatial-graphic comprehension tasks.
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Levine et al. (2012) examined how parents use spatial language during puzzle play in a study in which 
parent-child pairs were observed for an hour during naturalistic interactions every 4 months from  
26–46 months. Children who were observed playing with puzzles performed better on a mental 
rotation task at 54 months, after controlling for parent education, income and overall parent word 
types. Further, among those who engaged in playing puzzles during observations, those who played 
more puzzles did better. Although the frequency of puzzle play did not differ for boys and girls, the 
quality of puzzle play (a composite of puzzle difficulty, parent engagement, and parent spatial language) 
was higher for boys than for girls. In interpreting this, Levine et al. (2012) raised the possibility that girls 
might benefit from more complex puzzles. There is also evidence that higher amounts of parent spatial 
language occur during guided block play in which there is a goal than during free play with blocks 
(Shallcross et al., 2008). Thus, it is possible that spatial activities, spatial language, or both promote the 
development of spatial skills, such as block building and mental rotation.

Language is one domain-general cognitive skill on which young children may vary. Others include 
memory, visual-spatial skills, and executive functions (Mazzocco, 2009), though none of these are 
independent of one another and, like language, they are associated with learning difficulties in 
mathematics. 

The Nature and Scope of Mathematical Discourse

Language plays as important a role in mathematics learning as in other school subjects (Schleppegrell, 
2010). While teaching the vocabulary of mathematics to young children is important (e.g., Neuman, 
Newman & Dwyer, 2011), research has gone beyond the word level in identifying and describing the 
language challenges of mathematics. Haliday (1978), for example, refers to a mathematics register – 
‘the meanings that belong to the language of mathematics’ (p. 79). In this sense, learning the 
language of mathematics does not entail just learning new words, but also learning new ‘styles of 
meaning and modes of argument…and of combining existing elements into new combinations’  
(pp. 195–196). Hence, while activities such as counting and measuring may well draw on everyday 
language, children learning mathematics need to use language in new ways to serve new functions. 
According to Schleppegrell (2010), the concept of a mathematical register draws attention to the ways 
in which mathematical knowledge is different from knowledge of other academic subjects. She argues 
that learners need to be able to use language to participate effectively in ‘ways of knowing that are 
particular to mathematics’ (p. 79). Hence, if we view mathematics as discourse, we need to identify 
ways of apprenticing children into particular ways of doing mathematics in particular discursive 
contexts. Pimm (1991) argues that children in school are attempting to acquire communicative 
competence in the mathematical register, and that classroom activities should be carefully examined 
from this perspective in order to see what opportunities they offer for children’s language learning. 
Silver and Smith (1996) point out that, in developing and using language in mathematics, it is 
important that mathematics does not get lost and that discourse focuses on ‘worthwhile tasks that 
engage students in thinking and reasoning about important mathematical ideas’ (p. 24). 
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A number of theories reviewed in Chapter 2 under the broad umbrellas of constructivist/cognitive 
and sociocultural can be drawn on to explain the relationship between language and mathematics:

 � Cognitive theories, which have their origins in the work of Piaget, focus on the individual child’s 
construction of internal representations or structures. According to Cobb and Yackel (1996), 
constructivist perspectives can be characterised as interpretive, since knowledge is actively 
constructed by children in interaction with their environment. Constructivists focus on the way 
children talk about mathematics to investigate their development of mathematical knowledge. 

 � Sociocultural theories focus on discursive practices and the interaction of children. They draw on 
Vygotskian frameworks that stress the interaction between language and cognition and highlight 
the social dimension of language and the role of communication and participation. In sociocultural 
terms, children are enculturated into mathematics through social and discursive activity. 

Other researchers (e.g., Cobb, Yackel & McClain, 2000; Gutiérrez, Sengupta-Irving & Dieckmann, 
2010) have built on cognitive and sociocultural theories to view language as a tool for thinking, 
interpreting, constructing knowledge and developing mathematical ideas. In this view, oral language is 
one of a range of resources that also include written language, gesture, symbols, equations, graphs 
and other visual representations. Hence, all of these need to be taken into account in interpreting how 
children construct meaning during mathematical activities. Children coming from different backgrounds 
and contexts may be positioned in different ways to use these resources. According to Schleppegrell 
(2010), differences should be acknowledged and viewed as resources in the mathematics classroom if 
the focus is on meaning, and if teachers are able to draw on different perspectives. 

Sfard (2007) makes a useful distinction between language and discourse when she identifies language 
as a tool and discourse as an activity in which the tool (one of several) is used or mediates. For Sfard, 
knowing mathematics is synonymous with the ability to participate in mathematical discourse. 
Hence, learning is a special type of social interaction aimed at modification of other social interactions. 
An implication of this is that teachers can help modify children’s everyday discourse into a more 
mathematical discourse. Interestingly, Gutiérrez et al. (2010) point out that Sfard’s communicational 
approach to mathematics does not imply that children must first encounter a mathematical idea, use 
it, and then formalise it later into mathematical conventions (the ‘learning with understanding’ 
approach). Instead, Sfard proposes that an existing discourse of mathematics (e.g., thinking about 
big numbers or infinity) can be used to initiate children into a discourse of new objects. 

Sfard’s work can also help to clarify the distinction between everyday (colloquial or primary) 
discourse and literate (scientific or secondary) discourse. Sfard (2001) argues that everyday discourse 
does not naturally evolve into scientific (e.g., mathematical) discourse. This is because mathematical 
discourses are mediated by symbolic artefacts designed to communicate specific conceptual 
understandings of quantities (that is, symbolic mediation is a key characteristic of mathematical 
discourse). Since such discourse is often not a part of children’s everyday discourse, secondary 
discourse requires explicit teaching (Sfard & Cole, 2003, cited in Gutiérrez et al., 2010). 
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Gutiérrez et al. (2010) point out the importance of viewing everyday discourse and scientific  
(here, mathematical) discourse relationally. This implies that, rather than everyday discourse being 
viewed as a pre-requisite for mathematical discourse, mathematical discourse can be viewed as 
arising from (and feeding back into) everyday discourse. The two discourse types can be viewed as 
operating side-by-side, each being invoked in different circumstances depending on the context 
involved. An implication of this perspective is that children’s general language skills can develop  
as a result of participating in mathematical discourse. 

O’Halloran (2005) has focused on the characteristics of successful mathematics discourse as it relates 
to other available tools: (i) the meaning potential of language, symbolism and visual images are 
accessed; (ii) the discourse, grammatical and display systems of each resource function integratively; 
and (iii) meaning expansions occur when the discourse shifts from one resource to another (p. 204). 

Establishing a Math-Talk Culture 

NicMhuirí (2011) points to some of the differences between the discourse of traditional mathematics 
lessons, and the discourse of mathematics lessons that seem to engage children in mathematical 
discourse. While the former are often characterised by ‘repeated iterations of lower-level questions’ 
(p. 320) or the IRF (invitation-response-feedback/evaluation) pattern, and dominated by teacher 
talk, the latter can include ‘patterns of dialogue that involve making conjectures, and examining and 
justifying one’s own mathematical thinking and the mathematical thinking of others’ (p. 320). 
Although NicMhuirí’s analysis of mathematics lessons focused on third to sixth classes, her outcomes 
may have implications for mathematics teaching more generally. In particular, she identifies less 
helpful patterns of discourse where

 � teacher intervention focuses on the solution provided by children rather than their mathematical 
thinking 

 � there are lengthy teacher explanations between questions/dialogue

 � learners are prompted to arrive at a correct answer, with the teacher sometimes taking on the 
cognitively-demanding aspects of the task, and, on other occasions, focusing children’s attention 
on critical aspects of the problem, even if the children were expected to solve the problem on 
their own.

Although the pattern of interactions in the lessons analysed by NicMhuirí may have been justified 
on the grounds that they keep the lesson moving along towards an end-goal, important opportunities 
for engaging in mathematical dialogue, including mathematical reasoning, may be overlooked.  
This and similar work (e.g., Dooley, 2011) point to a need to support teachers to reflect on their 
classroom dialogue, and provide children with more opportunities to engage in mathematical 
thinking, along the lines described earlier. Indeed, the relative difficulty that children in Ireland, 
including those in second class, encounter with solving mathematics problems (see Introduction) 
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point to the urgency of promoting more interactive mathematical discourse in learning settings. 
Others (e.g., Hufferd-Ackles et al., 2004) provide a framework for establishing and developing 
math-talk learning communities in learning contexts. 

It also seems relevant, in the context of supporting mathematical discourse in early learning 
settings, to draw attention to more general strategies for language development (e.g., Dooley,  
2011; Shiel et al., 2012) that teachers can implement including 

 � following the child’s lead

 � mapping language to the child’s focus of attention 

 � cueing/prompting and inviting further comment

 � extending the topic by providing further comment

 � use of repetition, recasts and expansions

 � modelling correct use of vocabulary in sentences 

 � use of topic elaboration. 

NicMhuirí’s work also highlights the importance of teachers engaging children in discussing and 
solving problems among themselves. This is consistent with sociocultural theories of learning that 
emphasise the role of language in acquiring knowledge in social communities, and with more 
general theories of learning mathematics that emphasise the role of argumentation (e.g., Perry  
& Dockett, 2008). 

Learning Mathematical Vocabulary 

In earlier sections of this chapter, we noted the importance of vocabulary in establishing bridges 
between young children’s early sense of number and spatial sense, and their later mathematics 
learning. While mathematical vocabulary can be taught in formal or semi-formal settings such as 
maths classes, it can also be taught informally. As noted above, there is research evidence linking 
the frequency of adults’ use of mathematical vocabulary in informal activities such as playing with 
bricks or solving a puzzle/jigsaw that can impact on children’s mathematical learning. 

Efforts have been made to specify the mathematical vocabulary that young children should learn. 
For example, in the current PSMC, specific mathematical vocabulary which should be addressed is 
highlighted in the content objectives. In matching equivalent and non-equivalent sets, children 
should be supported in learning terms such as more than, less than, enough and as many as. In 
developing spatial awareness, such terms as above, below, near, far, right and left are identified as 
a focus of instruction. In the United Kingdom, in support of the National Mathematics Strategy, the 
UK Department for Education and Employment (DfEE, 2000) issued a booklet for teachers that 
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specified the range of vocabulary to be taught at each class level from reception (age 5 years) to 
year 6. In reception year, the mathematical areas under which vocabulary items are grouped include: 
counting and recognising numbers; adding and subtracting; solving problems; measures; shape and 
space; instructions and general. Importantly, the vocabulary booklet notes that key terms should, 
where possible, be taught in context, and instruction should be supported by the use of relevant 
real objects, mathematical apparatus, pictures and diagrams. The use by teachers of questions  
(both open-ended and closed) that enable children to use new vocabulary is stressed, and teachers 
are urged to be sensitive to the possibility that some vocabulary terms may be well understood by 
children in non-mathematical contexts or everyday language, but not in contexts where more 
precise mathematical understanding is important. In addition to targeted teaching of key 
vocabulary, opportunities should also be sought to support children’s learning and the use of 
mathematical vocabulary in a range of contexts including play, mathematics lessons (e.g., when 
solving problems), and other learning areas. 

Some researchers working with socio-economically at-risk preschool or kindergarten children  
(e.g., Neuman, Newman & Dwyer, 2011) have drawn attention to how such children often lack the 
conceptual knowledge required to understand mathematical discourse, and may need a more 
intensive approach to vocabulary development, compared with children who are not at risk.  
They report on a year-long programme administered to 3- to 4-year-olds in US Head Start 
classrooms that focused on word knowledge and conceptual development through taxonomic 
categorisation (categorising words) and embedded multimedia. Children in the programme, which 
covered aspects of health education (50 words) and living things (80 words) as well as mathematics 
(geometric shapes and number) (50 words), outperformed their counterparts in a control group on a 
range of outcome measures including domain-specific knowledge. Moreover, gains in word and 
categorical knowledge were sustained six months later. The authors interpreted the findings as 
suggesting that teaching words within taxonomic categories ‘may act as a bootstrap for self-learning 
and inference generation’. The programme made a distinction between the concepts to be taught 
(e.g., some geometric shapes have corners, and some do not) and the target vocabulary words  
(e.g., specific shapes), with an instructional emphasis on both. 

Variation in Language Skills and Impact on Mathematics 

A number of groups are known to struggle with general language acquisition, including children 
living in disadvantaged circumstances, children who speak a language other than the language of 
instruction at home, and children who have a language impairment (see also the discussion in 
Chapter 6, Section: Immersion Settings). 

We know that children living with disadvantage do not lack fundamental mathematical ability and 
that these children demonstrate few if any differences in the everyday mathematics they use in free 
play (e.g., Ginsburg et al., 2008). Familiarity with mathematics language is generally recognised as a 
key issue that must be addressed in early childhood mathematics education (e.g., Ginsburg, 2009a; 
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Hughes 1986). Mathematical language includes vocabulary, but just as crucial are language skills 
that enable the communication of mathematical thinking. The urgency to ensure that children living 
with disadvantage have adequate language experiences around mathematics is also emphasised by 
Perry and Dockett (2008) who argue that, ‘without sufficient language to communicate the ideas 
being developed, children will have the opportunities for mathematical development seriously 
curtailed’ (p. 93). Furthermore, they contend that the development of mathematical language, 
especially among non-English speakers, is particularly problematic because of mathematics’ 
specialised vocabulary and because common words have specialised meanings. 

In the United States, approximately 7% of children have specific language impairment (SLI), and 
while there is considerable variation within this group, many experience difficulty in learning the 
number-word sequence (Donlan, 2009). In one study, 5-year-olds with SLI were able to recite the 
number sequence up to 6, while their non-SLI counterparts reached 20 (Fazio, 1994). However, 
contrary to expectations, the SLI group showed a good understanding of the logical principles in 
object counting, including the principle that the final count word indicates the value of the set. 
When Fazio retested the children with SLI at 2-year intervals, they struggled on measures of basic 
calculation (Fazio, 1996, 1999). 

A similar pattern of procedural weakness and conceptual strength emerged in a study of 7-year-olds 
with SLI. Forty percent of the group were unable to count to 20, whereas just 4% of typically 
developing 5- to 6-year-olds were unable to do so. Again, the performance of the children with SLI 
on a test of understanding of arithmetic principles was similar to typically-developing peers (Donlan, 
Cowan, Newton & Lloyd, 2007). 

Nevertheless, Donlan (2009) warns that it is incorrect to accept that the effects of language difficulties 
on mathematical development are delimited in a clear way, with non-verbal number processes 
relatively unaffected. He points to a need for additional research that highlights how factors 
underlying SLI might impact on SLI children’s performance on tasks of enumeration and calculation. 

Conclusion 

Language plays a key role in the development of children’s mathematical thinking. Cognitive/constructivist 
and sociocultural theories of learning (see Chapter 2) support a strong focus on the use of language 
to acquire mathematical knowledge, and adults – whether parents, carers or teachers – are seen as 
key agents in supporting children’s development of mathematical language across a range of 
informal and more formal contexts. While some of the mathematical language used in preschool 
and early school settings will be informal and will arise from children’s participation in everyday 
activities (e.g., counting the number of children in a group, matching coats to children), other 
instances of language use will be planned around specific activities such as block building, solving 
puzzles/jigsaws, shopping or using mathematical software. These provide significant opportunities 
to introduce relevant mathematical vocabulary, engage children in using mathematical language 



67
Chapter 3 

Language, Communication and Mathematics  

through asking open or closed questions, paraphrasing or extending children’s responses, and 
encouraging them to explain their thinking. Most importantly, children should be provided with 
opportunities to engage in mathematical talk with other children.

 The key messages arising from this chapter are as follows:

 � Cognitive/constructivist and sociocultural perspectives on learning emphasise the key role of 
language and dialogue in supporting young children’s mathematical development. Emerging 
learning theories point to the importance of mathematical discourse as a tool to learn mathematics. 

 � In addition to introducing young children to mathematical vocabulary, it is important to engage 
them in ‘math talk’: conversations about their mathematical thinking and reasoning. 

 � Research indicates an association between the quality and frequency of mathematical language 
used by carers, parents and teachers as they interact with young children, and children’s 
development in important aspects of mathematics. This highlights the importance of adults 
modelling mathematical language and encouraging young children to use such language as they 
engage in dialogical reasoning. Children’s conversations among themselves about mathematical 
ideas can also support their development of mathematical knowledge. 

 � Children at risk of mathematical difficulties may need additional, intensive support to develop 
language and engage in mathematical discourse. In this context, extensive care and attention 
should be given to the language element of the learning and teaching of mathematics and extra 
supports should be provided in these contexts. 
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In Chapter 2 we saw how theories of mathematics learning have moved 
away from seeing learning as acquisition of knowledge towards seeing 
learning as the understanding of the practice of doing mathematics.  
This change in perspective implies the need for new learning goals for 
mathematics education. These new goals need to emphasise understanding 
and thinking as well as skills and facts. The specification of goals is an issue 
that is closely linked to pedagogy since different practices support different 
goals (Gresalfi & Lester, 2009). Awareness of the need to balance process 
and content goals is evident in a recent characterisation of early 
mathematics education in the United States (e.g., NRC, 2009). This focus is 
encapsulated in the following statement from Clements, Sarama and 
DiBiase (2004):

As important as mathematical content are general mathematical processes such as problem 
solving, reasoning and proof, communication, connections, and representation; specific 
mathematical processes such as organising information, patterning, and composing; and 
habits of mind such as curiosity, imagination, inventiveness, persistence, willingness to 
experiment and sensitivity to patterns. (p. 3)

In this chapter we examine approaches to the specification of goals for early childhood mathematics 
education more closely. In identifying goals for young children’s mathematics learning, commentators 
take different approaches and may choose to foreground particular goals. This is largely dependent 
on theoretical orientation, conceptions of mathematics, context and the age-range that they focus on. 
In this chapter we discuss one overarching framework related to higher-order thinking. We discuss 
two different approaches to the specification of goals for early childhood mathematics, one from a 
sociocultural perspective and one from a cognitive perspective. We consider how they deal with the 
content/process issue and we compare the approaches with that used for the specification of goals 
in the 1999 PSMC. We consider the implication for the structure of curriculum materials. 

A Coherent Curriculum 

The curriculum should have continuity from early childhood through all phases of education. One 
way of doing this and of mitigating discontinuities in mathematics learning is by having agreed 
goals, the nature of which can become more subject specific as children grow older (e.g., Pound, 
1999). In Ireland, revised goals for mathematics education will need to build on the broad learning 
goals related to each of the themes of Aistear (Well-being, Identity and Belonging, Communicating 
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and Exploring and Thinking). These themes provide the foundations on which subsequent 
mathematics-specific learning is based. In addition, the revised goals also need to be consistent 
with the goals of Project Maths. 

Essentially, underlying views of mathematics, of knowledge and of learning are what determine the 
nature of the goals that are specified in the curriculum. In curricula, all of the elements, including 
theoretical orientation and goals, must align. In the final analysis, considerations related to early learning 
and the relative weight given to cognitive and social processes are key issues that serve to guide the 
specification and presentation of goals. In the section which follows, we begin by describing goals for 
mathematics education which are over-arching and expressed at a very general level. Then we describe 
two different approaches to thinking about skills and concepts. First we discuss Perry and Dockett’s 
(2008) concept of powerful mathematical ideas as a unifying approach to emphasising both processes 
and content. Then we consider Sarama and Clements’ (2009) goals, which they refer to as big ideas 
that they present as content-oriented goals, while stressing processes as implicit in these goals. 

Specifying Goals 

Overarching Goals for Mathematics Education

Higher-Order Thinking

Taking an international perspective, Cai and Howson (2013) argue that there are commonly accepted 
learning goals in school mathematics – the development of knowledge and skills along with an 
emerging emphasis on the development of higher-order thinking skills. In the absence of commonly 
accepted definitions, they utilise Resnick’s (1987) characterisation of higher-order thinking as 
non-algorithmic, complex, with multiple solutions; involving nuanced judgement, application of 
multiple criteria, uncertainty, self-regulation, imposing meaning; and effortful. Cai and Howson 
(2013) draw attention to the flexibility and self-monitoring (meta-cognition) that these skills involve. 
These authors also emphasise the ability to work together with others as essential to the 
development of higher-order skills. 

Specific mathematical processes employ higher-order skills. While some of these skills may appear 
to be very abstract in terms of young children’s mathematical thinking, all of them have their genesis 
in early childhood. For instance, Australian researchers Perry and Dockett (2008) point out that 
argumentation is now seen as central to the mathematics development of young children. Citing 
Krummheuer (1995, p. 229), they define argumentation as a ‘social phenomenon, when co-
operating individuals [try to] adjust their intentions and interpretations by verbally presenting the 
rationale of their actions.’ They are concerned that there is recognition of what argumentation might 
look like in young children. 
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Engaging with Powerful Mathematical Ideas

Taking a strongly process-oriented approach and from a vantage point of sociocultural theory, Perry 
and Dockett (2008) propose a list of powerful mathematical ideas, to which they believe most 
young children have access (see Table 4.1). Again, an example of a ‘powerful idea’ is argumentation. 
These ideas combine processes and content, with processes foregrounded. In their view, knowledge 
and skills are developed through engaging in mathematical processes. They identify four important 
issues for the development of knowledge and skills, particularly at the school level: models and 
modeling, language, technology, and assessment. In their judgement, these key processes, when 
well-conceived, understood and promoted by teachers, can serve as critical drivers in the 
development of the powerful mathematical ideas that children need to understand. They emphasise 
children’s purposeful use of mathematics in their everyday lives in prior-to-school settings and in 
out-of-school settings. They focus on the centrality of using children’s understandings built up 
through engagement in everyday activity as a basis for learning and teaching mathematics in the 
range of early education settings. 

Exploring the Big Ideas in Mathematics Learning

Mathematics educators, especially in the US, make frequent reference to the need for teachers to 
understand the ‘big ideas’ in young children’s mathematics learning and use them to connect ideas 
in mathematics (NCTM, 2000). Baroody, Purpura and Reid (2012, p. 164) explain that these ideas 
interconnect various concepts and procedures within a domain and across domains. They represent 
‘big leaps’ in the development of children’s reasoning and can be seen, according to Fosnot and 
Dolk (2001, p. 11), as both ‘deeply connected to the structures of mathematics…[and] also 
characteristic of shifts in learners’ reasoning’. 

However, a definite list as to what exactly these ideas might be is more difficult to ascertain. Some 
examples of what different commentators understand as big ideas are to be found in the literature. 
For instance, enumeration (determining a set’s numerical value) is underpinned by a set of 
mathematical ideas such as cardinality (e.g., Ginsburg, 2009b). Unitising underlies the understanding 
of place value (e.g., Fosnot & Dolk, 2001).

From an early childhood perspective, Sarama & Clements (2009) define their big ideas in mathematics as

overarching clusters and concepts and skills that are mathematically central and coherent, 
consistent with children’s thinking, and generative of future learning. This organisation 
reflects the idea that children’s early competencies are organised around several large 
conceptual domains. (pp. 16–17)
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These authors appear to conflate the idea of goals with that of ‘big ideas’ (e.g., Smith-Chant, 
2010a). They suggest that in early childhood mathematics there are about twelve big ideas that 
need to be built up incrementally over time (see Table 4.1). They identify at least one accompanying 
big idea for verbal and object counting: counting can be used to find out how many are in a 
collection. Their big idea of composition and decomposition of shape has at least one associated big 
idea: geometric shapes can be described, analysed, transformed and composed and decomposed 
into other shapes. Sarama and Clements’ work on learning trajectories (see Chapter 5) is built on 
the big ideas, or goals, they identify as essential for the learning and teaching of early mathematics. 
The explication of each of their goals is based on several decades of work in the cognitive sciences 
which they synthesised and presented in the form of developmental progressions. Clements and 
Sarama (2009a, p. 6) stress that their goals focus on far more than facts and ideas, and that 
processes and attitudes are important in each goal. However, processes are not explicit in their 
specification of goals. This issue of how processes are presented and integrated with skills and 
content is one that is critical in terms of the presentation of the redeveloped curriculum. 

Table 4.1. Specifying Goals: Different Approaches

Perry and Dockett  
(2008)

Sarama and Clements  
(2009)

Primary School Mathematics 
Curriculum (1999)

Powerful mathematical ideas  
(a sociocultural perspective)

Big ideas  
(a cognitivist perspective) 

A socioconstructivist/
sociocultural perspective

 � Mathematization 

 � Connections

 � Argumentation

 � Number sense and mental 
computation

 � Algebraic reasoning

 � Spatial and geometric 
thinking

 � Data and probability sense 

 � Counting

 � Ordering numbers

 � Recognising number and 
subitising

 � Knowing different 
combinations of numbers

 � Adding and subtracting

 � Multiplying and dividing

 � Measuring

 � Recognising geometric shapes

 � Composing geometric shapes 

 � Comparing geometric shapes

 � Spatial sense and motions

 � Patterning and early algebra

 � Applying and problem-solving

 � Understanding and recalling

 � Communicating and 
expressing

 � Integrating and connecting

 � Reasoning

 � Implementing

 � Early mathematical activities

 � Number

 � Algebra

 � Shape and space

 � Measures

 � Data 
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The Structure of Curriculum Materials 

A particular issue in relation to curriculum implementation has been a widely acknowledged difficulty 
in the integration of processes, skills and content, with teachers placing greater emphasis on 
procedural aspects of mathematics than on broader educational goals (Anderson, White, & Sullivan, 
2005; Eivers et al., 2010; Handal & Herrington, 2003; Ross, McDougall, Hogaboam-Gray, & LeSage, 
2003). Numerous factors have been identified to explain the mismatch between ‘intended’, ‘enacted’ 
and ‘attained’ curricula (Cuban, 1993; Robitaille & Garden, 1989) – most particularly teacher beliefs 
(Anderson et al., 2005; Handal & Herrington, 2003). However, some attention has been given 
recently to the objective structure of curriculum materials (Herbel-Eisenmann, 2007). While 
acknowledging the complex and multifaceted nature of the teacher-curriculum relationship, Remillard 
(2005) urges curriculum developers to take account of this relationship in the design of materials:

…[C]urriculum materials have a number of characteristics beyond the specific 
mathematical content and pedagogy represented in the text. These characteristics include 
the look and voice of the text and its subjective scheme or how it is perceived. It is critical 
that curriculum developers pay careful attention to the multiple ways that their materials 
communicate with the teacher. They must consider how they are addressing the teacher 
through the design of their materials, how they expect the teacher to respond to their 
suggestions, and how they represent what it means to use their resource. (p. 240) 

Comparing the Perry and Dockett specification of goals with the Sarama and Clements specification, 
we can see that, while the former foregrounds processes but includes content areas, the latter 
appears to focus on content and sees processes as implicit. The question is whether one or the 
other approach is preferable in terms of key organisers in the redeveloped maths curriculum. There 
is also the issue of which presentation best promotes continuity of experiences and pedagogy in 
different settings. Advantages and disadvantages can be identified with both approaches. 

The Perry and Dockett specification foregrounds processes. This is consistent with their sociocultural 
perspective on learning. They lead with mathematization, a process which can actually be seen as 
content since as children explore a mathematical idea they are involved in the content of mathematics 
(e.g., Fosnot & Dolk, 2001). There are two readily identifiable arguments for a specification such as 
this one. The first relates to coherence – among the conditions that Schoenfeld (2002) identifies for 
high quality mathematics teaching is the development of ‘coherent curricula rather than disconnected 
sets of activities’ (p. 9). Given the sociocultural/situative view of mathematics, of mathematics 
education and of pedagogy espoused in previous chapters of this report, a specification with a strong 
focus on process makes for a greater degree of coherence. The second relates to how the curriculum 
presents to teachers. The Perry and Dockett list is a balanced one with processes listed before 
content, thus signalling to educators a revised emphasis. 
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In Ireland, the PSMC is presented in two distinct sections. In many respects, this curriculum is quite 
detailed. It includes a skills development section which describes the skills that children should 
acquire as they develop mathematically. It also includes a number of strands which outline content 
that is to be included in the mathematics programme at each level. Each strand includes a number 
of strand units. These are further broken down, mainly with reference content objectives, with a 
number of these related to each strand unit. However, research now suggests an alternative 
approach to breaking down the goals into large numbers of objectives. This involves a specification 
of key mathematical ideas and critical transitions.

Breaking Down the Goals: Critical Transitions within 
Mathematical Domains

Goals for mathematics learning can be developed at different levels of detail. Above we saw that 
Sarama and Clements (2009) appear to conflate the idea of goals with that of ‘big ideas’. However 
they also allude to accompanying ideas which indicate key insights in relation to children’s 
understanding of the goal or big idea. For instance they identify the notion that counting can be 
used to identify how many are in a collection, as a key insight in relation to verbal and object 
counting. Simon and Tzur (2004) also reference cardinality, but refer to it as a key developmental 
understanding (KDU). The big leaps and shifts in reasoning as described by Fosnot and Dolk (2001) 
and referenced earlier in the chapter appear to us to be analogous to KDUs. 

Simon considers that KDUs are essential in that they identify ‘critical transitions that are essential for 
children’s understanding of a particular concept or domain’ (p. 360). Furthermore, he argues that 
they provide the basis for the specification of what he terms important learning goals (along a 
developmental progression). From a cognitive science perspective, the identification of critical 
transitions and their incorporation into the curriculum as goal statements is essential, since doing so 
allows for progressive conceptual development, from key conceptual foundations to the incremental 
construction of understanding. For example, children need to learn about units of quantification 
(Sophian, 2004) in ways that allow them to easily build on this knowledge as they meet new (key) 
ideas and as their concepts about these develop. While not previously made explicit as KDUs, Simon 
points to important examples of these in the literature. Amongst other work referenced by him in 
this respect is the work of Gelman and Gallistel (1978), Piaget (1952), and Steffe and Cobb (1988), 
all in the area of number. He sees their work as clearly identifying KDUs (cardinality, composite units 
and conservation of number) that are central to children’s abilities to conceive of and work with 
number. Essentially what Sarama and Clements have done is to extract these from the literature and 
use them to build developmental progressions for their big ideas in mathematics.
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Some efforts to identify key elements of domain-related content are to be found in the literature.  
In the United States the Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics 
(NCTM, 2006) identified what they considered to be the important ideas and major themes which 
should receive special attention at particular points in time, across the domains of Number, 
Geometry and Measure. The aim of the focal points is to show teachers how they might build on 
important mathematical content and connections identified for each grade level (p. 3). The Focal 
Points approach ‘focuses on a small number of significant mathematical targets for each grade 
level…[and] the most significant mathematical concepts and skills…’ (p. 1). They are presented in 
narrative rather than list format, and describe the content emphases for different grade levels.  
Table 4.2 is an example of the kindergarten curriculum focal points.

Table 4.2. Kindergarten Curriculum Focal Points

Kindergarten Curriculum Focal Points Connections to the Focal Points

Number and Operations: Representing, 
comparing, and ordering whole numbers and 
joining and separating sets.

Children use numbers, including written 
numerals, to represent quantities and to solve 
quantitative problems, such as counting objects in 
a set, creating a set with a given number of 
objects, comparing and ordering sets or numerals 
by using both cardinal and ordinal meanings, and 
modeling simple joining and separating situations 
with objects. They choose, combine, and apply 
effective strategies for answering quantitative 
questions, including quickly recognising the 
number in a small set, counting and producing 
sets of given sizes, counting the number in 
combined sets, and counting backwards.

Data Analysis: 

Children sort objects and use one or more 
attributes to solve problems. For example, they 
might sort solids that roll easily from those that 
do not. Or they might collect data and use 
counting ‘to answer such questions as, ‘What is 
our favourite snack?’ They re-sort objects by 
using new attributes (e.g., after sorting solids 
according to which ones roll, they might re-sort 
the solids according to which ones stack easily).

Geometry: Children integrate their understandings 
of geometry, measurement, and number. For 
example, they understand, discuss, and create 
simple navigational directions (e.g., ‘Walk forward 
10 steps, turn right, and walk forward 5 steps’). 
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Kindergarten Curriculum Focal Points Connections to the Focal Points

Geometry: Describing shapes and spaces

Children interpret the physical world with 
geometric ideas (e.g., shape, orientation, spatial 
relations) and describe it with corresponding 
vocabulary. They identify, name and describe a 
variety of shapes, such as squares, triangles, 
circles, rectangles, (regular) hexagons, and 
(isosceles) trapezoids presented in a variety of ways 
(e.g., with different sizes or orientations), as well as 
such three-dimensional shapes as spheres, cubes, 
and cylinders. They use basic shapes and spatial 
reasoning to model objects in their environment 
and to construct more complex shapes.

Algebra: 

Children identify, duplicate and extend simple 
number patterns and sequential and growing 
patterns (e.g., patterns made with shapes) as 
preparation for creating rules that describe 
relationships. 

Measurement: Ordering objects by measureable 
attributes

Children use measureable attributes, such as 
length or weight, to solve problems by comparing 
and ordering objects. They compare the lengths 
of two objects both directly (by comparing them 
with each other) and indirectly (by comparing 
both with a third object), and they order several 
objects according to length.

Taken from Curriculum Focal Points for Prekindergarten Through Grade 8 Mathematics: A Quest for Coherence, by 
National Council of Teachers of Mathematics (NCTM) (2006), p. 12. Reston, Virginia: NCTM.

In Table 4.2. Kindergarten Curriculum Focal Points we see that the domains of Number, Geometry 
and Measure outline the key ideas within each domain. The key ideas are broken down into what 
appear to be critical transitions. These are framed as learning outcomes. It seems to us that the 
Focal Points approach provides a basis for structuring the curriculum at content level with the 
content-level descriptors providing a basis for identifying learning outcomes. We return to this topic 
in Report No. 18 (Chapter 3, Section: Content Areas and Curriculum Presentation). 

Table 4.2. Kindergarten Curriculum Focal Points (continued)
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Conclusion

The goals of a curriculum must be aligned with its underlying theory. A sociocultural stance implies 
that goals must be consistent with the view of learning as a socially and culturally embedded 
process which takes place in interaction with others. A curriculum which identifies goals and breaks 
them down into key mathematical ideas and critical transitions can help educators to move towards 
more focused teaching and assessment approaches.

The key messages presented in this chapter are as follows:

 � Curriculum goals should reflect new emphases on ways to develop children’s mathematical 
understandings, and to foster their identities as mathematicians. In the redeveloped curriculum 
both processes and content should be clearly articulated as goals.

 � The approach whereby mathematical processes are foregrounded but content areas are also 
specified is consistent with a participatory approach to mathematics learning and development. 

 � General goals need to be broken down for planning, teaching and assessment purposes. Critical 
ideas derived in this way indicate the shifts in mathematical reasoning required for the 
development of mathematical concepts. An understanding of mathematical development enables 
teachers to provide support for children’s progression towards curriculum goals. 

These issues are addressed in Chapter 5 and Chapter 6, and we return to them again in Report  
No. 18 (Chapter 3, Section: Content Areas and Curriculum Presentation). In Chapter 5 we discuss 
different approaches to the specification of learning paths and teaching paths, designed to enable 
learners to progress towards the goals of the curriculum. 



ChapteR 5

The Development of 
Children’s Mathematical 
Thinking
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A Historical Perspective

The idea of stages of development in children’s mathematical thinking and 
learning is most often associated with Piaget. His theory identified a 
sequence of what he considered to be invariant stages through which 
children’s thinking progresses – from sensorimotor to pre-operational to 
concrete operational and finally formal operational. Each stage was 
characterised by a particular type of thinking applicable across many 
domains. But we now know that development is not equal across 
mathematical domains; for instance, children may conserve number before 
they can conserve mass or capacity (e.g., Ryan & Williams, 2007). Also, 
within domains, development is gradual rather than step-like (Casey, 2009). 
We know that the context, the materials, the task and especially the 
language used can make a difference to how children reason when faced 
with any mathematical task (e.g., Donaldson, 1984; NRC, 2005). Research 
also shows that contrary to Piaget’s proposition, there is no clear 
progression from concrete to abstract thinking in children’s development 
(e.g., NRC, 2009). Young children’s thinking is both concrete and abstract 
(e.g., Ginsburg, 2009a). 

One framework for mathematics learning and teaching that is receiving attention in countries as 
diverse as Japan, Korea, Australia, as well as in Europe and the United States is that of learning 
trajectories, also sometimes referred to as learning paths (e.g., Bobis et al., 2005; Daro et al., 2011; 
Griffin, 2004; Lewis & Tsuchida, 1998; Stigler & Thompson, 2012; van den Heuvel-Panhuizen, 
2008). Interest in learning trajectories/learning paths is not confined to mathematics. They are also 
being developed in science and in literacy (e.g., Daro et al., 2011). The history of learning trajectories 
in mathematics education can be traced at least as far back as the work of Treffers (1987), whose 
perspective was that of the RME school (see below). The work of Simon (1995) was an important 
catalyst which resulted in intense interest in his (social constructivist) articulation of the concept of 
hypothetical learning trajectories (HLT). Work by American researchers Sarama and Clements is also 
included here since it currently features prominently in early childhood mathematics education, 
especially in the United States.
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In this chapter we explore the progression from the Piagetian idea of stages of development to the 
idea of learning trajectories and learning paths. We see how, through the 1970s and 1980s, the 
idea of levels of mathematical thinking was developed as a concept of interest for Realistic Maths 
Education (RME) theorists. Then in the 1990s the concept of hypothetical learning trajectories (HLTs) 
was advanced by Simon. He saw HLTs as key elements in mathematics teaching cycles. More 
recently, in the United States, Sarama and Clements have developed their learning trajectories for 
learning and teaching early mathematics (e.g. 2009). Each of these developments is of interest in 
the context of the current review, and potentially informative in relation to issues of curriculum, 
assessment, equity and teacher education. 

From Stages of Development to Levels of Sophistication  
in Thinking 

In recent decades cognitive scientists have focused on knowledge construction and on the thinking 
that children use to solve problems. This concerns children’s internal cognitive structures and 
processes and researchers’ interpretations and understandings of what is happening in relation to 
the child’s thinking (Cobb, 2007). Piaget’s theory has been adapted to gain insights into children’s 
mathematical thinking and how that thinking changes and develops over time. Interests are focused 
on how change occurs, most significantly qualitative changes in children’s mathematical reasoning 
(e.g., Casey, 2009). Both constructions of meaning for specific mathematics topics and the 
characterisation of children’s developing conceptualisation and reasoning in terms of different levels 
of sophistication in thinking are important emphases (Battista, 2004, p. 186). 

Developing Children’s Mathematical Thinking: Three Approaches 

An emphasis on helping learners to move through increasingly sophisticated levels of mathematical 
reasoning and understanding is now seen as a key focus for mathematics education from a 
cognitive science point of view (e.g., NRC, 2009). Gravemeijer (2004) argues that a pedagogy which 
supports this is generally well-articulated, i.e., it is ‘elaborated in terms of classroom culture, social 
norms, mathematical discourse, mathematical community, and a stress on inquiry and 
problematizing’ (p. 106). However, he argues that it is necessary to draw attention to the curriculum 
counterpart of this innovative pedagogy. He points out that in the 1960s and 70s curriculum design 
took as its starting point the knowledge and expertise of experts in order to construct learning 
hierarchies. The problem with that approach was that it did not take into account the perspective 
and personal input of the learner. Proposed revisions to the mathematics curriculum will need to 
consider how to ensure that this issue is addressed, particularly in guidance on pedagogy.
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Below, we present three different approaches to helping teachers in the task of developing 
children’s mathematical thinking in the way described above. What they have in common is the fact 
that each subscribes to the idea of learning trajectories or learning paths. Where they diverge is in 
the roles they see these playing in the teaching/learning process.

The First Approach: Working with Children’s Thinking and Understanding (RME) 

The notion of levels of thinking was first advanced by Freudenthal who drew, in particular, on the 
work of Pierre and Dina van Hiele. They were his students, and they had developed a model of 
geometric thinking at the University of Utrecht, Netherlands in 1957 (Crowley, 1987). The basis of 
this model is that thinking develops from an initial visual level through increasingly sophisticated 
levels, that is, analysis, abstraction, deduction and rigour.

Freudenthal (1971) expanded on this model in his theory on the learning of mathematics:

The van Hiele levels of the learning process are often characterised by a logical feature: the 
activity on one level is subjected to analysis in the next, the operational matter on one level 
becomes a subject matter on the next level. (p. 417)

This means that mathematical activities that have been carried out in an informal way initially later 
become more formal as a result of reflection (this is an aspect of mathematization as described by 
RME theorists e.g., van den Heuvel-Panhuizen, 2003). Early mathematics is constituent of and not 
separate from formal mathematics, implying that RME ideas about levels of thinking and their 
implications for pedagogy are elaborations of children’s earlier understandings. 

Key Features

The RME approach entails directing teachers’ attention to children’s understandings of mathematics 
and engaging children with rich problem contexts. Instruction evolves to suit the learners. When 
first introduced in the 1970s, this was a novel way to approach teaching. A feature of the approach 
is that children work with realistic problems. These allow them to imagine. The problems can include 
contexts from real-world situations, but also problems from the fantasy world of fairy tales or from 
the formal world of mathematics (van den Heuvel-Panhuizen, 2003). A second essential feature is 
the use of models developed by the children as a basis for teaching and learning. These have a 
specific role in that they provide the context in which children can be supported in the activity of 
mathematizing, i.e., ‘the analysing of real world problems in a mathematical way’ (Treffers & 
Beishuizen, 1999, p. 32). A third feature is that different levels of understanding can be 
distinguished and as children pass through these levels, models can have an important role in 
level-raising: they are seen as bridges between informal understanding and the abstraction of 
formal ideas. A model can, for instance, include materials, visual sketches or symbols. Models share 
two important characteristics: they have to be rooted in realistic contexts and they must be flexible 
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and applicable on a more general level. Models can be models of a situation initially, but then they 
must be capable of becoming models for organising new problems and reasoning about these in a 
mathematical way (van den Heuvel-Panhuizen, 2003). The models are formulated by children 
themselves in the course of their engagement with the problem and they gradually gain a better 
understanding of a rich, meaningful problem situation by describing and analysing it with more and 
more advanced means. By going through a series of modeling cycles, they finally develop an 
effective model with which they can also take on other (similar) complex problem situations (p. 29). 
See Report No. 18, Chapter 2, Section: Emphasis on Mathematical Modeling.

The Teacher’s Task

The RME position is that levels of thinking or understanding can be specified in a general sense and 
it is the teacher’s task to explore children’s understandings at the different levels and use these to 
progress learning. 

While general hypothetical learning trajectories are used as the basis of the teacher’s work these are 
seen as initial starting points which are subject to constant revision by the teacher as a learning 
trajectory specific to his or her particular classroom emerges. From this perspective, teachers learn 
to use learning-teaching trajectories that fit their particular situation (Gravemeijer, 2004). The 
trajectory provides an overview of levels of understanding in a domain. It should not be seen in a 
linear way: there can be variations in the steps. The trajectory sets out important signposts, and 
allows teachers to discern the differences in children’s understandings. This approach is very much 
about developing the teacher’s abilities to make decisions about how best to help children with 
‘intermediate attainment targets’, on the way to achieving general goals. These are seen as the 
crucial steps or ‘landmarks towards which the learning can be oriented’ (van den Heuvel-Panhuizen, 
2008, p. 9). 

Initial work in their project of developing learning-teaching trajectories has focused on the domain 
of number since it is seen as an area of concern for teachers and a good place to begin. This work is 
shown in Table 5.1 below. Some work has also been done on Geometry and Measures (van den 
Heuvel-Panhuizen & Buys, 2008). See also Report No. 18, Chapter 3, Sections: Measurement; 
Geometry and Spatial Thinking. 
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Table 5.1: A Learning-Teaching Trajectory for Number 

Emergent numeracy (preschool)

Elements

 � Recognising ‘two-ness’, ‘three-ness’, 
and ‘many-ness’ as a property of a 
group of objects

 � Learning to recall the number sequence

 � Imitating resultative counting 

 � Symbolising by using fingers

Growing number sense (K1 and K2)

Elements Levels

 � Learning to count Children know the counting sequence, at least up to 10.

 � Learning to count and calculate Within what are for them meaningful context situations, 
children are able to count to at least 10, arrange numbers in 
the correct order, make reasonable estimates, and compare 
quantities being more, less or equal (level 1).

 � Context bound counting and 
calculating 

Children can order, compare, estimate and count up to 10 
objects. They are also able to select a suitable strategy for 
simple addition or subtraction situations in such things as 
concealment games for up to 10 objects (level 2).

 � Towards pure counting-and calculating 
via symbolisation

Children can represent physical numbers up to 10 on their 
fingers and with lines and dots, and are able to use these 
skills for ‘adding up’ and ‘taking away’.

Calculations up to 20 (G1 and G2)

Elements Levels

 � Calculations by counting, supported 
where necessary by counting materials

 � Non-counting based calculating by 
structuring with the help of suitable 
models

The children can recite the number sequence up to 20 and 
can count up and down from any number in this domain. 
They can also put numbers up to 20 into context by giving 
them a real world meaning, can structure then by doubling 
and using groups of five and 10, and place them on an 
empty number line from 0 to 20. 

 � Formal calculation using numbers as 
mental objects for smart and flexible 
calculation without the need for 
structured materials

The children should be able to add and subtract quickly, in 
the number area up to 20 by structuring the numbers and, in 
time, they should be able to perform formal calculations with 
the help of remembered number properties. They should also 
be able to use this skill in elementary context situations and 
be able to both understand and use some conventional 
mathematical notation.

Adapted from van den Heuvel-Panhuizen, 2008



85
Chapter 5 

The Development of Children’s Mathematical Thinking

By way of defining a learning-teaching trajectory, van den Heuvel-Panhuizen (2008, p. 13) states 
that there are three interwoven meanings:

 � a learning trajectory that gives a general overview of the learning process of the students 

 � a teaching trajectory, consisting of didactical indications that describe how the teaching can 
most effectively link up with and stimulate the learning process

 � a subject matter outline, indicating which of the core elements of the mathematics curriculum 
should be taught. 

van den Heuvel-Panhuizen (2008) describes how the learning-teaching trajectory, or TAL8, with 
intermediate targets for calculation with whole numbers in primary schools builds on children’s 
earlier numerical experiences. They present TALs for number for the youngest children at three 
levels. They call the first level the level of ‘Emergent numeracy’ (preschool years), the second the 
level of ‘Growing number sense ‘(kindergarten 1 and 2), and the third ‘Calculations up to 20’ 
(grades 1 and 2). Further discussion of the relevance of this work as it applies to Number, Geometry 
and Measures is presented in Report No. 18 (Chapter 3, Section: Content Areas).

The intention is to extend this work into secondary education. The learning-teaching trajectory is 
seen as part of ‘the longitudinal perspective’ (p. 11) that all teachers need to hold. It is seen to go 
beyond a textbook and beyond tests, but to focus on the attainment targets and a general indication 
of teaching activities that can contribute to achieving these. In particular, domain-specific ‘levels’ of 
understandings are seen as potentially useful for specifying communal trajectories, i.e., ones that 
apply to particular school years or grades. They are also seen as useful in relation to level-raising, 
i.e., moving children towards the final core goals of mathematics education at primary level. In addition, 
it is suggested that TALs provide a means whereby teachers can monitor children’s development.

The Second Approach: Teacher-Generated Hypothetical Learning Trajectories (Simon)

Working with the tension created by the need to attend to predetermined goals for children’s 
learning whilst at the same time being responsive to children’s thinking, Simon (1995) developed a 
theoretical model of teacher decision-making with respect to mathematics tasks. Simon-proposed 
HLTs comprise the learning goal, the learning activities and a description of the thinking and 
learning that students might engage in. 

8 In Dutch, learning-teaching trajectories are referred to as TALs. TAL stands for Tussendoelen Annex Leerlijinen, 
translated into English as intermediate attainment targets in learning-teaching trajectories (Fox, 2005/2006).
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Figure 5.1. Adapted from Reconstructing Mathematics Pedagogy From a Constructivist Perspective 
by M. Simon, 1995. Journal for Research in Mathematics Education, 26(2), p. 136.
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He emphasised the unpredictable nature of teaching mathematics, and the need for continuous 
modifications to the teaching plan. Simon (1995) describes a dynamic cycle wherein:

as students begin to engage in the planned activities, the teacher communicates and observes 
the students, which leads the teacher to new understandings of the students’ conceptions. 
The learning environment evolves as a result of interaction amongst the teacher and students 
as they engage in the mathematical content…it is what the students make of the task and 
their experience with it that determines the potential for learning. (p. 133)

Simon’s explication of the term hypothetical learning trajectory emphasises the teacher’s prediction 
as to the path by which learning might proceed. It emphasises its hypothetical nature – the actual 
learning trajectory is not known in advance. For Simon, learning trajectories are essentially a 
teaching construct. This is similar to the RME perspective. While Simon’s (1995) original articulation 
of the HLT did not specify teaching activities, he did later address the issue of tasks (Simon & Tzur, 
2004). His concern then was that tasks would not be left to intuition or trial and error but would be 
deliberately constructed to promote the learning process. 

The teacher, in designing a learning trajectory, must consider both the tasks to be used and the 
learning goals. With respect to the conceptual learning goals, Simon (2006) proposes the 
identification of key developmental understandings (KDUs):

significant landmarks in students’ mathematical development…understandings that account 
for differences between those learners who show evidence of more sophisticated 
conceptions from those who exhibit less sophisticated conceptions. (p. 370)

The significance of Simon’s approach is the influence it had on subsequent work on ways of 
developing children’s mathematical thinking. One example of this is the body of work on learning 
trajectories developed by Sarama and Clements. 

The Third Approach: Pre-Specified Developmental Progressions as a Basis for 
Learning Trajectories (Sarama and Clements)

In the United States, Sarama and Clements synthesised relevant research from cognitive science on 
the learning of mathematics from birth to age 8. From this synthesis they developed their learning 
trajectories (e.g., 2009). Table 5.2 shows Sarama and Clements’ learning trajectory for volume 
measurement. We draw the reader’s attention to the level of detail presented in these developmental 
progressions and the accompanying hypothesised mental actions that appear in the third column. 
Note also the age column on the left. The authors state that these are age-indicators based on 
research and are provided only as a general guide. 
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Table 5.2. A Developmental Progression for Volume Measurement

Age 
(Years)

Development Progression Actions on Objects

0–3 Volume/Capacity: 

Volume Quantity Recognizer 

Identifies capacity or volume as attribute.

 � Says, ‘This box holds a lot of blocks!’

Perceives space and objects within the 
space.

4 Capacity Direct Comparer 

Can compare two containers.

 � Pours one container into another to see 
which holds more.

Using perceptual objects, internal bootstrap 
competencies to compare linear extent (see 
the length trajectory for ‘Direct Comparer’) 
or recognize ‘overflow’ as indicating the 
container ‘poured from’ contains more than 
that ‘poured into.’

5 Capacity Indirect Comparer 

Can compare two containers using a third 
container and transitive reasoning.

 � Pours one container into two others, 
concluding that one holds less because it 
overflows, and the other is not fully filled.

A mental image of a particular amount of 
material (‘stuff’) can be built, maintained, 
and manipulated. With the immediate 
perceptual support of the containers and 
material, such images can be compared. For 
some, explicit transitive reasoning may be 
applied to the images or their symbolic 
representations (i.e., object names).

6 Volume/Spatial Structuring: 

Primitive 3-D Array Counter 

Partial understanding of cubes as filling a 
space.

 � Initially, may count the faces of a cube 
building, possibly double-counting cubes 
at the corners and usually not counting 
internal cubes.

 � Eventually counts one cube at a time in 
carefully structured and guided contexts, 
such as packing a small box with cubes.

With perceptual support, can visualize that 
3-D space can be filled with objects (e.g., 
cubes). With strong guidance and 
perceptual support from pre-structured 
materials, can direct the filling of that space 
and recognize that filling as complete, but 
often only intuitively. Implicit visual 
patterning and constraints of physical 
materials guides placement of cubes.
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Age 
(Years)

Development Progression Actions on Objects

7 Capacity Relater and Repeater 

Uses simple units to fill containers, with 
accurate counting.

 � Fills a container by repeatedly filling a unit 
and counting how many.

 � With teaching, understands that fewer 
larger than smaller objects of units will be 
needed to fill a given container.

See the learning trajectory level, Length Unit 
Relater and Repeater.

7 Volume/Spatial Structuring: 

Partial 3-D Structurer 

Understands cubes as filling a space but 
does not use layers or multiplicative 
thinking. Moves to more accurate counting 
strategies e.g.:

 � Counts unsystematically, but attempts to 
account for internal cubes.

 � Counts systemically, trying to account for 
outside and inside cubes.

 � Counts the numbers of cubes in one row 
or column of a 3-D structure and using 
skip counting to get the total.

Builds, maintains, and manipulates mental 
images of composite shapes, structuring 
them as composites of individual shapes 
and as a single entity – a row (a unit of 
units), then a layer (a ‘column of rows’ or 
unit of unit of units). Applies this composite 
unit repeatedly, but not necessarily 
exhaustively, as its application remains 
guided by intuition.

8 Area/Spatial Structuring: 

3-D Row and Column Structurer

 � Counts or computes (row by column) the 
number of cubes in one row, and then 
uses addition or skip counting to 
determine the total.

 � Computes (row times column) the number 
of cubes in one row, and then multiplies  
by the number of layers to determine the 
total.

Builds, maintains, and manipulates mental 
images of composite shapes, structuring 
them as composites of individual shapes 
and as a single entity – a layer (a unit of 
unit of units) of congruent cubes. Applies 
this composite unit repeatedly and 
exhaustively to fill the 3-D array – 
coordinating this movement in 1–1 
correspondence with the elements of the 
orthogonal column. If in a measurement 
context, applies the concept that the length 
of a line specifies the number of unit lengths 
that will fit along that line. May apply a skip 
counting scheme to determine the volume.

Taken from Early Childhood Mathematics Education Research: Learning Trajectories for Young Children by J. Sarama 
and D. Clements, 2009, pp. 306–607. New York, NY: Routledge. 

Table 5.2. A Developmental Progression for Volume Measurement (continued)
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The key difference between their work and that of either the RME school, or Simon, is the emphasis 
they place on developmental progressions. These are learning paths ‘through which children move 
through levels of thinking’ (2009, p. 17). 

Clements and Sarama (2004) set out to emphasise both learning processes and teaching processes 
together: 

We conceptualise learning trajectories as descriptions of children’s thinking and learning in a 
specific mathematical domain and a related conjectured route through a set of instructional 
tasks designed to engender those mental processes or actions hypothesised to move children 
through a developmental progression of levels of thinking, created with the intent of 
supporting children’s achievement of specific goals in that mathematical domain. (p. 83)

While initially they used the term hypothetical learning trajectories, more recently they tend to use the 
term learning trajectories while still maintaining that their trajectories are hypothetical. As discussed 
earlier, Sarama and Clements see their goals as the twelve big ideas they identify for early mathematics 
(see Chapter 4, Table 4.1. Specifying Goals: Different Approaches). The research-based developmental 
progressions or learning paths identify the levels of thinking that children progress through as they 
work towards the goal. These levels of thinking are at the core of the trajectory. The instructional tasks 
or teaching paths consist of ‘sets of instructional tasks, matched to each of the levels of thinking in the 
progressions’ (Clements & Sarama, 2009a, p. 2). Also, as noted above, age estimates are also provided 
as a general guide to when children might develop certain understandings. 

The levels of thinking, as characterised by Clements and Sarama (2009b), are understood to be 
domain-specific: 

Children are identified to be at a level when most of their behaviours reflect the thinking-
ideas and skills of that level…Levels are not absolute stages. They are benchmarks of 
complex growth that represent distinct ways of thinking…sequences of different patterns of 
thinking and reasoning. Children are continually learning, within levels and moving between 
them…Children may also learn deeply and jump ahead several ‘levels’ in some cases. (p. 5)

Comparing the Three Approaches 

Definitions and Characteristics

The learning trajectory concept is interpreted, re-presented and applied in a range of different ways. 
Table 5.3 presents the definitions of learning trajectories for each of the three approaches described 
above. We see these definitions as indicative of some of the subtle nuances and differences inherent 
in each of the approaches.
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Table 5.3. Three Approaches to Defining Learning Trajectories

Realistic Maths  
Education Trajectories 

Simon’s Hypothetical 
Learning Trajectories 

Sarama and Clements’  
Trajectories 

A learning-teaching trajectory 
has three interwoven meanings:

 � a learning trajectory that gives 
a general overview of the 
learning process of the 
students 

 � a teaching trajectory, 
consisting of didactical 
indications that describe how 
the teaching can most 
effectively link up with and 
stimulate the learning process

 � a subject matter outline, 
indicating which of the core 
elements of the mathematics 
curriculum should be taught.

A hypothetical learning 
trajectory is composed of the 
learning goal, the learning 
activities and a description of 
the thinking and learning that 
students might engage in.

Learning trajectories are 
descriptions of children’s 
thinking and learning in a 
specific mathematical domain 
and a related conjectured route 
through a set of instructional 
tasks designed to engender 
those mental processes or 
actions hypothesised to move 
children through a 
developmental progression of 
levels of thinking, created with 
the intent of supporting 
children’s achievement of 
specific goals in that 
mathematical domain (Clements 
& Sarama, 2004, p. 83).

Learning-teaching paths from the RME perspective have much in common with sociocultural/situative 
perspectives. For example, establishing an appropriate classroom culture for successful learning in 
mathematics is emphasised. Discussion is the context within which the teacher focuses on what 
Gravemeijer (2004) refers to as ‘the inventions of the students’ (p. 126). The approach used by 
Simon and by Sarama and Clements both take a cognitive science approach to promoting children’s 
mathematical understanding. Simon’s theoretical notion of HLTs was important in that it moved 
away from any notion of learning progressing in a linear way. It recognised that not all children 
follow the same path towards understanding. It sought to apply constructivist theory to teaching 
approaches. Similarly, Fosnot and Dolk (2001) describe what they call ‘a landscape of learning’ and 
how children traverse this as they engage in mathematics in the classroom – ‘They go off in many 
directions as they explore, struggle to understand, and make sense of their world mathematically’ 
(p. 18).
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Fosnot and Dolk describe how children’s learning paths twist and turn, cross each other and often 
use an indirect route to get a particular landmark. They illustrate this in Figure 5.2 below.

Figure 5.2: Reprinted with permission 
from Young Mathematicians at Work: 
Constructing Number Sense, Addition and 
Subtraction by C. T. Fosnot & M. Dolk, 
2001, p. 18. Portsmouth, NH: Heinemann.  
All rights reserved.

In contrast, because the detailed learning trajectories developed by Sarama and Clements are 
presented linearly, educators may incorrectly infer that mathematical development is linear. 

It seems to us that one of the confounding issues for readers in dealing with the dense and complex 
literature surrounding the various learning trajectories and learning paths is that, while they are 
referred to as learning trajectories, their central purpose is generally as a pedagogical tool. Simon 
and Tzur (2004) clearly state that a HLT is a vehicle for planning the learning of concepts, while 
Clements and Sarama (2004) consider Simon’s HLTs as a way of describing the pedagogical thinking 
involved in teaching mathematics for understanding.

The different ways in which the trajectories model has been developed is perhaps also a response to 
the context in which individual theorists see the trajectories being used. For instance, in the US there is 
a great deal of concern to accelerate both the professional development of teachers of children aged 
3–6 years, and to specify standards for early childhood mathematics education. The learning trajectory 
approach is seen as a way to meet both concerns (e.g., NRC, 2009). On the other hand, RME 
perspectives appear to focus more on working in a contingent way with children’s ideas. Theorists 
from this perspective generally see learning trajectories, or TALs, as a tool to be used in contexts 
characterised by teacher judgement, and where teaching is characterised by an emergent, creative and 
adaptive pedagogy focused on real problems located in children’s own experiences. In Japan, for over 
a decade, learning trajectories have provided the basis for lesson study, i.e., detailed planning of 
research lessons by teachers. These lessons are taught, reflected on, analysed and redesigned by 
teachers and in this way instruction improves (Lewis & Tsuchida, 1998). See Report No. 18, Chapter 6, 
Section: Frameworks for Thinking about Pedagogy; Using Tools for Teacher Preparation.

Recognising Diverse Routes in Learning

From a sociocultural point of view, there are many possible routes that children may take to reach a 
common goal. Socioculturists emphasise the role that experiences and contexts play in determining 
what children learn, but also the role of context in determining what learning children might display 
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during observations and assessments focused on ascertaining the extent of their understanding. 
Sarama and Clements (2009) describe how, in constructing their developmental progressions, they 
used the available research but, where none was available, they used judgement and best guesses to 
suggest a hypothetical path. Learning trajectories then can be regarded as ‘invented cultural artefacts’ 
that have been constructed in order to ‘help students get from point A to point B’ (Stigler & Thompson, 
2012, p. 192). Taking a similar stance, Wager and Carpenter (2012) remind us that learning trajectories 
are cognitive constructs based on certain assumptions about the cognitive nature of knowledge ‘…
they do not fully account for the situated nature of children’s learning…they should be used in a way 
that considers and connects to children’s experiences’ (p. 198). Another observation suggests that 
learning trajectories based on tightly specified developmental progressions appear to have lost Simon’s 
original focus on children’s learning as it might unfold in interactions with the teacher and the 
accompanying decision-making that the teacher might engage in (Empson, 2011). In contrast, the TALs 
are much less detailed and thus explicitly suggest that development can follow different paths.

Our reflections suggest that any presentation of learning trajectories to educators would need to be 
couched in terms of their potential as reference tools and not as roadmaps. 

Recognising Developmental Variation

The different ways in which the learning trajectories have been developed are to some extent a 
consequence of the perspectives of the theorists and the extent to which they subscribe to different 
social and/or cognitive perspectives. The idea of universal development is deeply ingrained in 
cognitive science and the idea that many children may do things differently during the course of 
their mathematical learning and development is a relatively new expectation influenced by 
sociocultural perspectives. The following joint statement from the US National Association for the 
Education of Young Children/National Council for Teachers of Mathematics (2002/2010) is helpful in 
stating a balanced position:

the research base for sketching a picture of children’s mathematical development varies 
considerably from one area of mathematics to another. Outlining a learning path does not 
mean that we can predict with confidence where a child of a given age will be in that 
sequence. Developmental variation is the norm, not the exception. However children do tend 
to follow similar sequences, or learning paths, as they develop. (p. 19) 

We have seen, however, that some frameworks use age-related steps or indicators in order to 
present learning progressions. We see inherent dangers with this approach. The key point we wish 
to emphasise here is that the linking of stages of development with age-levels is problematic. 
Different children develop at different rates and their learning is strongly influenced by culture and 
experience. From our perspective, it is more theoretically coherent to conceive of development and 
learning as proceeding along a path which has significant markers. The learning trajectory or path 
for an individual child cannot be known in advance. In other words, any proposed trajectory is a 
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hypothetical one. Hypothetical learning trajectories are not the same thing as preferred teaching 
trajectories or paths. We have seen that, according to the original construct, hypothetical learning 
trajectories are a teaching construct which are speculative as regards how a particular child may 
develop. On the other hand, preferred teaching trajectories or paths could be considered a useful 
framework of reference for planning on the part of teachers.

Curriculum Development and the Role of Learning 
Trajectories 

Steffe (2004) raises the question, ‘Whose job is it to design learning trajectories?’. First and foremost, 
responses to this question are reflective of a view of knowledge, of learning and of teaching. They 
also reflect understandings about teachers and teaching, and of autonomy and agency in relation to 
the profession. They relate to issues of teacher preparation and preparedness in working with 
learning trajectories, in conceptualising children’s mathematical learning, in planning effectively, and 
in establishing an appropriate classroom culture for successful learning in mathematics. 

Supporting Teachers in Planning

The mathematics curriculum is concerned with emphasising tasks that enable children to work in 
different ways, to organise and interpret tasks in ways that make sense to them while making use of 
different mathematical strategies. This necessitates the design of HLTs. Designing these is not an 
easy task. The teacher must understand children’s mathematical conceptions and engage in 
conceptual analysis (e.g., Simon & Tzur, 2004, Clements & Sarama, 2004). In recognition of the 
need to support teachers in this regard, Gravemeijer (2004) proposed that they be offered ‘a 
framework for reference and a set of exemplary instructional activities that can be used as a source 
of inspiration’ (p. 107). Ready-made instructional sequences are rejected because the teacher will 
continually have to adapt to the actual thinking and learning of his or her students. The emphasis is 
on the local nature of the planning. The trajectories are developed in response to the children’s 
ideas and follow the cyclical process outlined by Simon (1995) and described above. Clements and 
Sarama (e.g., 2009b) appear to take a somewhat different approach, one where much of the 
decision-making is done by mathematics educators and presented to teachers in the form of 
detailed specifications of teaching paths. It seems to us that mathematics education theorists, in 
dealing with this quandary of teachers’ understanding and their generation of learning trajectories, 
have taken diverging approaches. The issue is really about the detailed specification of what 
Clements and Sarama (2004) describe as ‘natural developmental progressions’ (p. 83). While these 
authors and others coming from a mainly cognitive science perspective see such specification as 
unproblematic, theorists coming from a sociocultural or similar perspective (for example, RME) are 
likely to temper such a position in favour of an approach which emphasises more explicitly the 
hypothetical nature of learning paths. 
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While conceding that detailed developmental sequences are most likely over-simplified descriptions 
of development, we see them as having a role in terms of assessment. They can provide a 
theoretical framework for guiding teacher judgements (e.g., Ginsburg, 2009b). Their strength here 
lies in the fine-grained analysis of learning that they provide. They can serve as reference points as 
to where children are along the way to meeting the goals of the curriculum (e.g., Daro et al., 2011). 
They can provide a structure within which teachers can identify and address difficulties that arise for 
children. HLTs are seen as particularly useful for teaching concepts whose learning is problematic 
generally or for particular students (Simon & Tsur, 2004). One identifiable gap in the literature is the 
use of these trajectories for identifying and addressing the needs of high-achieving learners.

An example of the use of learning trajectories to develop teachers’ work in assessing young children 
aged 5–8 years is provided by the Victorian Early Numeracy Research Project (ENRP). The three year 
project focused on developing teachers’ understanding of mathematics in the early years, evaluating 
the effect of professional development programmes, and describing effective practice in mathematics 
in the early years of schooling (Clarke, 2001; Bobis et al., 2005). Central to the ENRP was the 
development of a framework of ‘growth points’ in young children’s understandings of mathematics in 
different domains. Growth points were considered by the ENRP team as ‘key stepping stones’ along 
paths to mathematical understanding (Clarke, 2001). It was not considered that children would 
necessarily pass through each growth point in succession or that the growth points were discrete. 
Furthermore, the framework gave teachers a tool for assessing children’s understandings and building 
on children’s current skills and concepts. One of its purposes was to provide a basis for task 
construction for assessment via interview. In developing this framework the researchers drew on the 
work on learning trajectories. Assessment tasks were created to match the framework.

The issue of learning trajectories and assessment is also discussed in Chapter 6 in the context of 
assessing and planning for progression (Section: Supporting Children’s Progression with Formative 
Assessment). 

Supporting Learning for Pre-Service Teachers

We also see an important role for well-structured developmental progressions of concepts in the 
education of teachers, particularly at pre-service level. Detailed knowledge of these can provide 
pre-service teachers with frameworks related to general mathematics development. 
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Conclusion

In considering the potential of the range of work on learning trajectories, we find it useful to 
consider Fosnot and Dolk’s (2001) perspective on the issues which are implicated in teachers’ 
understandings of children’s learning and of how to plan for that learning. Fosnot and Dolk  
argue that

Strategies, big ideas and models are all involved – they all need to be developed as they 
affect one another. They are the steps, the shifts and the mental maps in the journey. They 
are the components in a “landscape of the learning”. (p. 12)

The research indicates that teachers’ understanding of developmental progressions is one aspect in 
helping them to develop hypothetical learning paths for use in their classrooms. They sit alongside 
their knowledge of the big ideas or key goals (see Chapter 4). They support teachers’ understandings 
of children’s emerging models (see this chapter). Research also suggests that teachers need a great 
deal of support in moving from a linear model of learning to one in which children engage as members 
of dialogic communities in tasks that are truly problematic (see Fosnot & Dolk, 2001). All of this has 
implications for teacher education, an issue that is discussed in Report No. 18 (Chapter 6).

The key messages arising from this chapter are as follows:

 � Learning trajectories describe learning paths in the various domains of mathematics. These are 
based on developmental progressions which have been constructed for a number of big ideas in 
mathematics. They indicate a general sequence that might apply to development. 

 � There are different approaches to the explication of learning paths. For example, linear/nonlinear 
presentation, level of detail specified, mapping of paths to age/grade, and role of teaching. 
Different presentations reflect different theoretical perspectives. 

 � An approach to the specification of learning paths that is consistent with sociocultural 
perspectives is one which recognises the paths as

i. provisional, as many children develop concepts along different paths and there can never be 
certainty about the exact learning paths that individual children will follow as they develop 
concepts.

ii. not linked to age, since this suggests a normative view of mathematics learning.

iii. emerging from engagement in mathematical-rich activity.

Curriculum design must take into account the children’s reasoning in and contribution to the 
learning-teaching situation.



Assessing and Planning 
for Progression

ChapteR 6
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This chapter looks at the assessment of mathematics and ways in which 
assessment data can be used in planning for progression in mathematics 
learning in preschool and primary school settings attended by young 
children. First, the chapter examines formative assessment in terms of 
conceptual underpinnings and key methods. The focus then shifts to 
diagnostic and summative assessment as the use of screening/diagnostic 
and standardised tests is considered. The chapter concludes with a 
consideration of the use of assessment data for planning and progression in 
a range of contexts, including immersion settings, and settings involving 
children with special needs. 

The formative assessment methods discussed include observation, tasks, interviews, conversations 
and pedagogical documentation. The methods are inclusive of all children. Each of these provides 
scope for examining the embedded nature of children’s mathematical learning, changes in their 
understandings, what children can do when supported by others, their potential capabilities and 
strengths, and their participation in activities and tasks. They also provide scope for assessing 
children’s dispositions and identities as mathematics learners. These aspects are key foci of 
assessment from a sociocultural perspective (e.g., Fleer & Richardson, 2009). The discussion on 
screening/diagnostic tests urges care in using such methods, and highlights a need to draw on 
multiple sources of information when assessing children in various at-risk groups. Caution is advised 
in relation to the use of standardised tests with children in the 3–8 years age range.

Assessing Mathematics Learning in Early Childhood

Aistear (NCCA, 2009b) defines assessment as 

the on-going process of collecting, documenting, reflecting on and using information to 
develop rich portraits of children and learners in order to support and enhance their future 
learning. (p. 72)

Assessment in the Primary School Curriculum: Guidelines for Schools (NCCA, 2007) offers a similar 
vision of assessment. 

In order to support children’s learning, it is essential that teachers are familiar with each child’s 
mathematical understandings and learning. Educators acquire this understanding through formative 
assessment of children’s mathematical learning since this approach serves to best represent the 
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complexity and depth of children’s learning (e.g., Carr 2001; Carr & Lee, 2012; Drummond 2012; 
Perry, Dockett & Harley, 2007). Increasingly, assessment is seen as a collaborative process between 
children and adults, and one in which teachers support and scaffold children’s work. This view of 
assessment is predicated on a view of pedagogy that has relationships at its core (e.g., Fiore, 2012). 

Formative Assessment 

Conceptual Frameworks 

Eliciting children’s mathematical thinking is critical to understanding, monitoring and guiding their 
mathematical learning. Research-based conceptual frameworks which describe mathematical 
thinking in terms of levels of sophistication (i.e., learning paths as described in Chapter 4), provide the 
basis against which educators can then interpret children’s reasoning. This process of locating a 
child’s thinking on what Battista (2004, p. 202) refers to as ‘a detailed map of the cognitive terrain 
required to construct understanding of a topic’ is referred to as cognitive-based assessment, and it is 
increasingly seen as an effective tool for planning learning opportunities and for guiding children in 
their construction of mathematical meaning. We also know that dispositional learning is a crucial 
aspect of early learning and this too must be monitored and fostered. Carr and Lee (2012) illustrate 
the centrality of dispositions when they state that ‘Dispositions act as an affective and cultural filter 
for the development of increasingly complex knowledge and skills’ (p. 15). In other words, children’s 
dispositions towards mathematics and towards engaging in mathematical ways of thinking and 
knowing are influenced by how they feel towards these activities. Knowledge and dispositions 
develop hand in hand – they are interdependent. Formative assessment also plays a key role in the 
construction of a learner identity (e.g., Bruner, 1996; Carr & Lee, 2012). Identity develops as children 
interact with mathematical knowledge, skills and ideas in the home and in education settings – it is 
socioculturally constructed. This implies that children’s identities as mathematics learners are formed 
during early childhood. Learning and a sense of identity cannot be separated; some consider them 
one and the same thing (Lave & Wenger, 1991). How teachers and parents recognise and respond to 
children’s numeracy practices shape children’s identities (e.g., Anderson & Gold, 2006). Educators can 
greatly influence the development of children’s identities as mathematicians by the way in which they 
frame children’s activity. For instance, children will bring a rich store of mathematical achievement 
with them to school. This needs to be recognised and harnessed. Carr and Lee (2012) remind us of 
the opportunities that educational settings provide not just for the construction of identity but also 
critically for the editing of learner identities. In other words, teachers can influence, in a positive way, 
children’s perceptions of themselves as mathematics learners. One way to do this is for teachers to 
collect and study mathematics-related vignettes of children’s social activities at home and in the 
education setting – and then to reflect on the meanings of these. This could be especially effective 
for supporting children during transitions and during the early months in a new setting, particularly 
when discussed with children and parents. 
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In the section that follows we focus on what research tells us about how caregivers and teachers 
can most effectively carry out assessments of learning in order to gather data on children’s 
achievement and their developing dispositions and identities as mathematicians.

Methods 

In line with good early childhood practice internationally, both Aistear (NCCA, 2009b) and 
Assessment in the Primary School Curriculum: Guidelines for Schools (NCCA, 2007) identify a range 
of appropriate methods of formative assessment including observations, conversations, tasks, tests 
and self-assessment. Educators can assemble portfolios of children’s learning and they can work 
with children and parents to compile pedagogical documentation as evidence of children’s 
mathematics learning. Effective assessment is closely related to teachers’ knowledge and their 
recognition of what constitutes significant learning, some of which could be informed by their 
knowledge of general learning paths in the major mathematical domains. A number of methods can 
be used, often together, to build a rich picture of children’s mathematical learning over time. The 
ability to recognise the mathematics in children’s everyday activities and to extend the potential 
learning arising from these is critical. 

Observations

Observations can provide educators with the data to write rich narrative assessments of children’s 
mathematical learning. These assessments can focus on different aspects of children’s mathematical 
development. Contextual information can be included in the emerging picture of children’s 
development. Depending on the circumstances, questioning or follow-up tasks can be used in order 
to check children’s levels of mathematical understanding demonstrated or assumed. In engaging in 
these processes, educators draw on their deep knowledge of what mathematics is and how it 
develops in early childhood (e.g., Ginsburg & Ertle, 2008).

Arising from observations, ‘learning stories’ (Carr, 2001) can be constructed by the educator or 
co-constructed by the educator and child/children, with contributions from family and other 
significant adults. These are narrative accounts of learning and development and they take a holistic 
approach to assessment. They are often supplemented with photographs. 

Carr (2000) describes learning stories as ‘structured observations, often quite short, that take a 
‘narrative’ or ‘story approach’ (p. 32). They keep the assessment anchored in the situation or action. 
Learning stories are rich and deep accounts of selected events as they are observed through specific 
lenses, for example the themes or goals of the curriculum. These assessments are learner-centred as 
opposed to content-centred. They do not fragment children’s learning and they pay attention to the 
positive, rather than focusing on need and deficit (e.g., Dunphy, 2008).

When initially developed, learning stories focused mainly on dispositional learning (e.g., Carr, 2001). 
However, recent developments of the method in early childhood classrooms in schools in New 
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Zealand have seen teachers focus on both knowledge and disposition. This involves the teacher 
noting both the mathematics and the learning disposition evident in the analysis (Carr & Lee, 2012). 
From their experiences in working with preschool- and school-based educators, these authors 
conclude that

Learning Stories can capture the intermingling of expertise and disposition, the connections 
with the local environment that provide cues for further planning, the positioning of the 
assessment inside a learning journey, and the interdependence of the social, cognitive and 
affective dimensions of learning experiences. At the same time, Learning Stories enable 
children and students to develop capacities for self-assessment and for reflecting on their 
learning. (p. 131)

In addition, Carr and Lee argue that learning stories meet four challenges associated with formative 
assessment: the challenge of engaging children in co-authoring the curriculum and assessment and 
exercising agency in relation to aspects of their learning; encouraging reciprocal relationships with 
families; recognising learning journeys and continuities in learning over time; and appropriating a 
repertoire of practices where the learning is distributed over a number of languages and other modes 
of meaning making. Even the youngest children are now becoming everyday users of technology in 
the home and in early education settings (e.g., Plowman, Stephen & McPake, 2010). Learning 
mathematics with technology, and using technology to express mathematics understanding and 
thinking are increasingly important avenues of learning and expression for young children (see Report 
No. 18, Chapter 2, Section: Digital Tools). Arising from their work with teachers, Carr and Lee (2012) 
observe that

Learning Stories have now participated in the new digital technologies in three ways: 
transforming the ways in which Learning Stories can be constructed, tracing children’s 
Information Communications Technology (ICT) learning journeys, and emphasising the value 
of image-based ways of thinking. (pp. 112–113) 

From the assessment perspective, this expands the ways in which children’s learning can be 
identified and documented. It provides a multi-modal approach to assessment of children’s 
mathematics learning. 

Tasks

Tasks can be conceptualised in different ways; for instance, MacDonald (2011; 2012) draws 
attention to the value of mathematical drawing activities and of photographic assignments as tasks 
for assessing and extending children’s understandings at the start of school. In schools, tasks are 
often initiated by the teacher and this in itself may present a challenge in ensuring that they are 
meaningful and relevant, and at the very least, motivating and engaging for young children. 
Educators need to consider the structure and characteristics of tasks and how these relate to the 
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learning (e.g., Yelland & Kilderry, 2010). Tasks can be teacher-designed or they may be pre-designed 
ones that accompany curriculum materials. The key issue is that the teacher can identify the 
possibilities in the child’s responses. Guidelines in relation to the use/development of tasks are 
presented in Report No. 18 (Chapter 2, Section: Cognitively Challenging Tasks).

Interviews 

Interviews, or focused conversations, are opportunities to explore indepth children’s thinking and 
reasoning through conversation (and observation), generally about tasks that the child undertakes 
as part of the interview. Observations, tasks and conversations during the course of an interview 
are methods that complement each other and they are frequently used together (e.g., Ginsburg, 
1997b; NRC, 2009). The success of each is contingent on the teacher’s knowledge and 
understanding of early childhood mathematics development (e.g., NRC, 2009). Some curricula in the 
United States, for example Big Math for Little Kids (e.g., Clements & Sarama, 2009b) and Building 
Blocks (e.g., Ginsburg, 2009b), have provided protocols for this work.

Ginsburg advises teacher interviewers to ‘adopt, at least provisionally, a theoretical framework with 
which to interpret your observations’ (1997, p. 120). Recently, he discussed how cognitive science 
can provide that framework in the shape of developmental trajectories or learning paths (Ginsburg, 
2009b). He argues that understanding these provides a useful background to understanding 
individual children. But he also draws attention to the paradox of using developmental trajectories 
in interviewing:

The interviewer’s goal is sensitivity to the child. The interviewer wants to have an ‘open 
mind’ in order to discover what is in the child’s mind. The goal is to learn how the child 
thinks and how the child constructs a personal world…On the other hand, to discover 
something about the child’s cognitive construction, the interviewer must have some ideas 
what to look for, some notions about the forms children’s thinking may take. Lacking 
concepts for interpreting the child’s behaviour and explanations, the interviewer is likely to 
overlook what is important and to focus on what is trivial. (pp. 119–120)

As the educator engages with the child, assessments can be made: of performance, of  
thinking/knowledge, of learning potential, and of affect/motivation. The information derived can 
then be used to shape instruction ‘in a principled way’ (Ginsburg, 2009b, p. 111). The interview, 
well done, can detect strengths and weaknesses that otherwise may go undetected, but the ability 
to do the work well is predicated on well-developed mathematical as well as pedagogical subject 
knowledge. Mathematical knowledge for teaching is discussed in Report No. 18 (Chapter 6, Section: 
Mathematical Knowledge for Teaching (MKT)). 

The understanding of the child’s perspective, which is elicited in the course of the interview, 
provides a critical counter-balance to age/stage/level-related presentations of children’s 
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mathematical thinking and acknowledges the child as capable, knowledgeable, logical, sense-making 
and agentive. It recognises children as competent participants in their education (e.g., Dunphy, 2012). 
The interview is an opportunity for educator and child to co-construct mathematical understandings. 
Other significant gains are identified. For example, experience of the interview ‘engages the child 
in talking about one’s thinking, justifying one’s conclusions, and in general engaging in 
mathematical communication’ (NRC, 2009, p. 264). Ginsburg (1997b) too points to metacognitive 
and expressive gains: ‘the child sharpens, or even acquires the ability to introspect and express 
thinking’ (p. 114). These claims relate to the learning that can happen in the course of an 
assessment, what Wiliam (2007, p. 1054) refers to as assessment as learning. Because of its 
sensitivity to the individual, interviewing is particularly useful in seeking to accommodate a diverse 
range of mathematical abilities. 

Conversations

While educators might quickly grasp the benefits of one-to-one interviewing, research has identified 
a particular need to provide educators with extensive curriculum guidance in interviewing for the 
purposes of promoting children’s mathematics learning (NRC, 2009) often in the context of 
professional development (Ginsburg, 1997b). In reality, given the busy nature of classroom life, many 
educators may plan to use an extended interview on only a few occasions in any given year. 
Focused conversations may be the method of assessment used much more frequently. This method 
of assessment assumes knowledge of learning paths in different mathematical domains. While 
educators need to learn to use the interview as a means of making in-depth assessments of a 
child’s understanding of a particular concept or big idea such as counting, more usually teachers 
also need to have mathematical conversations with children during the course of classroom 
activities as the opportunity occurs. For example, the child’s understanding of shape can be 
ascertained in the course of activities with blocks or tangrams. Sensitive questioning and the use of 
a variety of questioning techniques is an area of general pedagogical knowledge that has been 
highlighted as a key factor in promoting early learning generally (e.g., Siraj-Blatchford et al., 2002). 
Donaldson’s (1984) work illustrated the dramatic effect of the inclusion or omission of a single 
adjective in questioning children on so-called ‘logical’ tasks. Furthermore, it is essential that in 
questioning the youngest children we note her caution that ‘the young child…first makes sense of 
situations (and perhaps especially those involving human intentions) and then uses this kind of 
understanding to help him make sense of what is said to him’ (p. 59). We know that questioning 
isn’t the only way, nor necessarily the best way, of eliciting responses from young children (e.g., 
Fisher 1990; Norman 1993). The Aistear guidelines (NCCA, 2009b) identify a range of methods 
which the educator can use in interactions with young children. These include naming and affirming 
children’s actions and behaviours; supporting participation and learning, and assisting learning. 
Interactions such as these present contexts for assessing early mathematics learning. 
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Pedagogical Documentation 

Pedagogical documentation, the documentation of children’s learning, is a framework for assessment 
which originated in the work of the Reggio Emilia preschools in Italy. Learning moments are captured 
usually through observation, transcription and visual/audio representations such as photos and 
recordings. This is the content of the pedagogical documentation. What makes pedagogical 
documentation different to traditional observation is the process that takes place in the collaborative 
negotiation and revisiting of the learning. Pedagogical documentation may be defined as:

both content and process involving the use of concrete artefacts in the form of audio 
recordings, photographs, examples of the children’s work, and collaborative revisitation, 
interpretation, and negotiation by the protagonists (children, teachers and parents) to 
promote dialogue and reflection. (MacDonald 2007, p. 233) 

While the approach seems theoretically to have great potential, there are few if any published 
examples of its use in the area of mathematics learning and teaching. In the study reported here, it 
proved challenging for teachers working with early literacy in Canadian schools due to the need for 
high levels of teacher support. However, the examples of the documentation process offered from 
the Reggio perspective do include some mathematically focused work, for example Shoe and Meter. 
On the Reggio Children website the project is described thus:

The starting point is a concrete request: the school needs a new table. Teachers propose to 
children to take care of it: what to do? The first approaches to the discovery, to the function 
and the use of measures. Children have access to the mathematical thinking through the 
operations of orientation, play, choice of relational and descriptive languages.  

(http://www.reggiochildren.it/?libro=scarpa-e-metro&lang=en)9

Supporting Children’s Progression with Formative Assessment 

In rural and regional Australia, research aimed at investigating early childhood educators’ thoughts 
on young children’s mathematical thinking and development found that, while preschool teachers 
were learning and keeping records in relation to mathematics, it didn’t extend beyond observation. 
Participants in that study also reported reluctance to introduce technology into the settings and this 
was due to their lack of confidence and competence (Hunting et al., 2013). This is significant given 
the importance that Carr and Lee (2012) accord to technology in identifying and documenting early 
learning (see discussion of methods above). It is quite likely that similar attitudes are to be found 
amongst the educator population here. In the United States, the NRC report (2009) notes that while 

9 Reflecting on the work of Castagnetti, M. & Vecchi, V. (1997) Shoe and meter. Reggio Emilia, Italy: Reggio 
children.

http://www.reggiochildren.it/?libro=scarpa-e-metro&lang=en


105
Chapter 6 

Assessing and Planning for Progression

formative assessment shows great promise, the methods of assessment have not been clearly linked 
to the teaching that takes place subsequently. A number of mathematics educators suggest that 
some of the challenges of integrating learning, teaching and assessment can be met by reference to 
learning and teaching paths. Ascertaining children’s learning and their multi-path learning 
trajectories enables educators to make judgements regarding how best to support future learning. 
For instance, Ginsburg (2009b) argues that the rich information gained from one-to-one interviews, 
which may include insights into children’s experiences with aspects of mathematics in everyday 
situations, actually reveals a great deal about children’s understanding of mathematics and this 
information can be used to compile a profile of the child as a mathematics learner. The teacher can 
then design appropriate learning experiences for the child. As Ginsburg describes it, the teacher can 
do so since he/she is now in a position to decide ‘on a specific course of action with a specific child’ 
(p. 125). In other words, the teacher is now in a position to decide on a teaching path to help the 
child. Ginsburg sees the teacher’s judgement at this point as critical and one that cannot be 
replaced by a pre-designed script. As he sees it ‘…the task of teaching mathematics is so complex 
that a detailed script is likely to do more harm than good’ (p. 126). 

From a RME perspective, mathematics educators have identified intermediate steps for trajectories 
in the areas of number, measure and geometry as guidance for assessment. They argue that these 
ensure that teachers know what to look for (van den Heuvel-Panhuizen, 2008; van den Heuvel-
Panhuizen & Buys, 2008). Learning-teaching trajectories as a basis for assessment are discussed 
further in Report No. 18 (Chapter 3, Section: Content Areas). Earlier, we discussed the role of 
developmental progressions as a support for teachers in assessing learning (see Chapter 5). 
Young-Loveridge (2011) describes how, in New Zealand, individual diagnostic assessments (based 
on interviews), in conjunction with a research-based framework outlining the learning progression 
in number, have provided a powerful means for teachers to determine children’s starting points and 
make decisions about ways to enhance learning. 

A project which sought to improve mathematics and numeracy outcomes through a sustained, 
collaborative programme of professional development and action research was carried out in 2004 in 
South Australia. As part of that project, Perry, Dockett and Harley (2007) worked with preschool 
educators who engaged in writing learning stories which focused on children’s ‘powerful mathematical 
ideas’ (see Chapter 4). They did so in the context of eight developmental learning outcomes for 
children’s learning in the preschool year as presented in The South Australian Curriculum, Standards 
and Accountability Framework (Government of South Australia, 2001). The findings established the 
technique of learning stories as a valid assessment method compatible with the holistic approach 
inherent at the preschool level. The researchers describe how this was achieved through the educators’ 
use of a numeracy matrix. The matrix constructed by the researchers and the educators consisted of  
56 cells (8 developmental learning outcomes x 7 powerful mathematical ideas), with each cell of the 
matrix providing examples of pedagogical questions for the educators as they were teaching towards, 
assessing or reporting on the developmental learning outcomes. For instance, in relation to the 
powerful mathematical idea of Algebraic Reasoning and the developmental learning outcome that 
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Children develop a range of thinking skills, the questions generated were ‘How do we encourage 
children to use patterns to generate mathematical ideas?’ and ‘In what way do we provide 
opportunities for children to reflect upon their mathematical pattern making?’. 

The matrix proved to be a powerful tool for enabling mathematically-focused assessment practices. 
It appeared that the educators used the matrix as a framework for reflecting on and identifying 
children’s mathematical learning. They used it as a scaffold with which to build the analyses of 
children’s activities, and subsequently to write the resulting learning stories. Significantly, the stories 
captured both dispositional and content-related learning, and documented learning in relation to 
both. As observed by the researchers:

the matrix is a dynamic reflection of the knowledge of the educators using it, and, as such, 
should be expected not only to be grounded in the contexts in which these educators work 
but to change as their knowledge grows. (Perry, Dockett & Harley, p. 5) 

The methods reviewed above will undoubtedly prove challenging for teachers. Nevertheless, if there 
is to be coherence between mathematics curriculum, pedagogy and assessment, it is clear that 
educators will need to be supported and encouraged to move towards implementing such 
approaches in assessing early mathematics learning. 

Arising from the above discussion, there are three important themes evident in relation to 
assessment of early mathematics. They are as follows:

 � The role of strong conceptual frameworks such as general developmental progressions when 
assessing. These determine what teachers recognise as significant learning, what they take note 
of and what aspects of children’s activity they give feedback on. 

 � The possible benefits of co-constructing assessment with children. 

 � The potential of digital technologies for documenting learning and for shaping learner identities.

Diagnostic and Summative Assessment

There is considerable debate in the literature on the value of administering more formal measures of 
early mathematical knowledge, whether those measures comprise screening/diagnostic tests designed 
for small groups or individuals that are administered using standardised procedures, but mainly 
produce qualitative information, or more formal standardised tests which are administered to larger 
groups and almost always lead to norm-referenced interpretations. Indeed, standardised testing in 
particular has generally been rejected by early childhood educators as a valid assessment approach for 
use with young children. This position is encapsulated in the following statement by Fiore (2012):
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In current early childhood classrooms, most assessment is designed to acquire information 
that will help responsible individuals make decisions in the interest of the child’s growth and 
development. Testing as part of such assessment takes time and resources…This mandatory 
time either reduces classroom time for free play and exploration or must be carved out of 
other organized periods of the day…The assessment process is further challenging because 
teachers recognize that one particular test or score does not paint a full, clear picture  
of a complex, developing child. This is supported by research that states that standardized 
testing of children under the age of 8 is scientifically invalid and contributes to detrimental 
labelling and can permanently damage a child’s educational future… (p. 5)

A key consideration in relation to such tests concerns the aspects of early mathematics measured 
(that is, what, according to the test, constitutes mathematical knowledge). According to Smith-Chant 
(2010b), early numeracy tests often measure skills found on the mathematics curricula taught in the 
early primary years, and may afford limited attention to important preschool numeracy skills that may 
be foundational for later mathematical development. Such tests may overestimate the formal aspects 
of numeracy knowledge, particularly in the areas of number-language and arithmetic, and under-estimate 
the non-language-based aspects of numeracy understanding (e.g., the concept of non-verbal 
counting, more, less, time and patterning). Moreover, they may have a heavy language component, 
presupposing that a child’s understanding of early numeracy is language-based. 

Snow and Van Hemel (2008) outline some key issues than can arise in administering direct 
assessments such as diagnostic tests and more formal standardised tests. These include the following:

 � The child may not be familiar with this type of task or be able to stay focused.

 � Young children have a limited response repertoire, being more likely to show rather than tell 
what they know.

 � Young children may have difficulty responding to situation cues and verbal directions.

 � Young children may not understand how to weigh alternative choices, for example, what it 
means for one answer to be the ‘best’ answer.

 � Young children may be confused by the language demands, such as negatives and subordinate 
clauses.

 � Young children do not respond consistently when asked to do something for an adult.

 � In some cultures, direct questioning is considered rude.

 � The direct, decontextualised questioning about disconnected events may be inconsistent with the 
types of questions children encounter in the classroom.

 � Measurement error may not be randomly distributed across programmes if some classrooms 
typically use more direct questioning, like that found in a standardised testing situation.



108
Research Report No. 17 
Mathematics in Early Childhood and Primary Education (3–8 years)

Berliner (2011) argued that many young children may have a restricted ability to comprehend the 
formal, spoken instructions required for many standardised tests, that they lack the sophistication to 
interpret situational cues or written instructions, and that a test administered at one point in time 
may not capture important shifts in changes in a child’s development. 

While it is accepted that diagnostic and summative assessments may not be appropriate or desirable 
for use with young children, we recognise that there are contexts in which their use may be seen as 
helpful (for example, to identify children who may be at risk of learning difficulties). The key issue 
here is that, if used at all, they should be used as only one measure of children’s mathematics 
learning and development. Next, we consider the types of information that screening/diagnostic 
tests and standardised tests can provide. 

Screening/Diagnostic Tools

The primary purpose of screening/diagnostic tests is to identify children’s learning difficulties in 
mathematics at an early stage, with a view to providing early intervention. Such tests are often 
administered on a one-to-one basis, allowing test administrators (usually teachers) to evaluate 
children’s responses to set tasks, including the reasoning behind those responses. In relation to  
the lowest-achieving children, four components of number competence have been highlighted as 
important to include in screening/diagnostic measures. These are (i) magnitude comparison, or  
the ability to discern which number in a set is greatest, and relative differences in magnitude;  
(ii) strategic counting, defined as the ability to understand how to count efficiently and use counting 
strategies; (iii) ability to solve simple word problems; and (iv) retrieval of basic arithmetical facts 
(Gersten et al., 2012). 

The following are issues that may arise in the administration and interpretation of screening/diagnostics 
tests, such as the Drumcondra Tests of Early Numeracy (ERC, 2011) and the Learning Framework in 
Number (LFIN) (Wright, Martland, & Stafford, 2006): 

 � Such tests are generally administered to children deemed to be at-risk of learning difficulties in 
mathematics; hence, not all children in a group will need to be assessed using these methods; 
indeed many screening/diagnostic tests are not designed to provide detailed information on the 
abilities of average or higher-achieving learners.

 � Screening/diagnostic tests can provide valuable qualitative (formative) information on the reasons 
underlying children’s responses, if test administration allows users to gather and record such 
information.

 � Such tests are often linked to instructional programmes or interventions. In some cases, the 
interventions have been demonstrated to be effective in a range of contexts; in other cases, 
there may be limited evidence to support instructional recommendations, and hence care will 
need to be exercised in deciding what support to provide. 
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 � Performance on screening/diagnostic tests (and on other types of tests) may be associated with 
factors such as educational disadvantage or the children’s linguistic skills, and these factors need 
to be taken into account in interpreting outcomes. 

 � Performance on screening/diagnostic tests can be predictive of later performance on more formal 
standardised measure of mathematics (e.g., ERC, 2011). However, such tests may not be predictive 
at the individual child level, and other evidence, in addition to the outcomes on a screening/
diagnostic test, may need be taken into account in making inferences about a child’s risk status. 

 � Screening/diagnostic tests for young children often focus on number, and other important 
aspects of numeracy or mathematics, such as shape and space, may be overlooked. 

Standardised Norm-Referenced Tests 

In general, group-administered, standardised tests of numeracy or mathematics are deemed 
inappropriate for use with young children. Indeed, in the US, states are not required to administer 
standardised tests for accountability purposes until children are in the latter part of third grade  
(8–9 years of age). Similarly, while assessment at Key Stage 1 in England originally comprised formal 
paper-and-pencil tests in mathematics, this is no longer the case, and teachers now submit results 
based on their own professional judgements, though supports are available to help teachers make 
judgements, including optional tests. 

In Ireland, standardised tests are administered to children in second class, as part of the National 
Assessments of Mathematics Achievement (see Eivers et al., 2010), which is conducted every five 
years. In addition, since 2012, schools are expected to administer standardised tests to children in 
second, fourth and sixth classes, and to report the outcomes to parents and to the school’s Board of 
Management. Schools may exempt certain children from testing and/or reporting, though criteria for 
this are not well defined. Drummond’s (2012) analysis of the test performance of a young boy 
named Jason (aged 7 years 6 months), provides a graphic account of the inadequacies in using such 
tests with children of this age as a way of assessing individual learning. 

While standardised tests can provide an overall indication of a child’s performance (for example, a 
standard score, percentile rank or sten score), and some of these scores can be aggregated across 
children at the same class level (e.g., the proportions of children in a class scoring at each sten 
score), they provide limited diagnostic information, and, where such information can be generated, 
it may be distorted because the tests have to serve multiple purposes. 

Although standardised tests are typically based on a framework that broadly mirrors the underlying 
curriculum, there may be limited value in relying on content-area or process subtest scores. This is 
because, in general, there may be too few items on a subtest to allow for reliable information to be 
generated. This often tends to be the case with the Data strand, which may be represented by just a 
few items on a test for young children. 
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The recent increased emphasis on standardised testing for accountability purposes (e.g., DES, 2011) 
may also lead to an increased emphasis on preparing children to take standardised tests (meaning 
that test content becomes very familiar to children over time). A consequence of this is that test 
performance may improve, but children’s proficiency in mathematics may not change. 

Finally, standardised tests do not provide information on such factors as procedural fluency 
(accuracy, efficiency and flexibility), strategic competence, adaptive reasoning (logical thinking and 
justification) or productive disposition (behavioural-emotional components) (Mueller, 2011). In other 
words, standardised tests tell us nothing about these key strands of mathematical proficiency. 
Clearly, where used, standardised tests can only be considered to comprise one element of a more 
comprehensive assessment framework for planning, teaching, and learning of mathematics and 
which has at its centre a strong practice of formative assessment. 

Many of the issues that arise in administering and interpreting the outcomes of group-administered 
standardised tests also apply to individually-administered standardised tests. These include the 
range of mathematical knowledge assessed and the lack of information on children’s thinking 
processes. However, an individually-administered test does allow for the creation of an easier 
rapport between test administrators and child, than is possible with a group-administered test. 

Planning for Progression Using Assessment Outcomes

A primary purpose of gathering assessment information is to use it as a basis for planning instruction. 
Where the mathematical development of young children including preschoolers is concerned, adults 
will need to draw on the outcomes of appropriate forms of formative assessments – observations, 
tasks, interviews and conversation. The interpretation of outcomes is guided by the adult’s 
understanding of children’s general cognitive development (what should be expected at different 
developmental points in terms of language and understanding), as well as mathematical development 
(e.g., through familiarity with learning paths – see above). As outlined in Aistear (NCCA, 2009b), a 
key aspect of assessment is the recording of assessment data so that adults have a basis on which to 
plan future learning activities, taking into account children’s current knowledge and their needs. 

Planning for progression will occur at the level of the individual teacher/carer, and among groups of 
adults working with or at least familiar with the same children. The literature (e.g., Ginsburg, 2009a) 
suggests that, for younger children, the focus is on 

 � the mathematical knowledge that children bring from home (including invented strategies) and 
how this relates to opportunities for mathematical development presented in preschool/early 
primary school

 � the quality of their everyday language and their mathematical language, including their 
knowledge and use of key terms in areas such as number and shape and space 
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 � their ability to talk about problem-solving in formal and informal mathematical activities

 � their understandings and metacognition with respect to mathematics – their sense of their own 
ability to solve a mathematical problem

 � their abilities to make connections across aspects of mathematics, and between mathematics 
and everyday life

 � their mathematical dispositions. 

As children progress through the primary school classes, teachers may extend the range of 
assessment outcomes that they use in their planning to include those arising from screening/
diagnostic tests, and, perhaps towards the end of the 3–8 years range, from standardised tests.  
At this stage, it is important to integrate the outcomes of formative and diagnostic/summative 
assessments since, as Ginsburg (2009b) points out, standardised tests, in and of themselves, do not 
provide information about children’s underlying thinking processes. In this view, children might do 
quite well on a standardised measure, yet may lack the sense-making and critical thinking that are 
the hallmarks of mathematical proficiency. 

Immersion Settings

One immersion setting in the Irish context is the Irish-medium setting – whether naíonraí10 or 
primary schools – where children may learn mathematics in a first, second, or third language – Irish. 
Here, teachers will have to take children’s proficiency in Irish into account in interpreting assessment 
outcomes – does the child have sufficient language proficiency to understand the task being 
assigned, and to express his/her mathematical thinking (see also Chapter 3, Section: Variation in 
Language Skills and Impact on Mathematics). There is, for example, evidence from the 2010 
national assessments of English and mathematics in Irish-medium schools (Gilleece et al., 2012) that 
children may have struggled with the language on a standardised test of mathematics administered 
in Irish, and hence may have performed less well than they were capable of. This, perhaps, 
underlines the importance of combining information from multiple sources in arriving at inferences 
about the mathematical performance of children in such settings. 

Wood and Coltman (1998) argue that ‘it is difficult to over-emphasise the importance of verbal 
communication in the development of children’s mathematical understanding’ (p. 114). The 
implication of this is that empowering children to develop their language skills in the language of 
instruction of the school is of vital importance for supporting the development and expression of 
mathematical understanding. Many children in Irish-medium settings have a common language, 
English, shared among themselves and the teacher. This facilitates communication, even though the 

10 Naíonra is a playgroup run through Irish for children aged 3–5 years, who attend daily for 2–3 hours.
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language policy of the settings may be discouraging of this. Code-mixing, where utterances 
involving vocabulary or structures from two or more languages are combined, is often used as a 
strategy to allow communication and understanding (Mhic Mhathúna, 1999). 

Similar issues arise in addressing the assessment needs of children whose first language is not 
English or Irish. Commentators differ on the need to provide assessments for the child in their 
stronger language (Baker, 2001), or in the language of instruction (Sierra, 2008). Peal and Lambert 
(1962) established that proficiency in both languages resulted in higher scores in verbal and 
non-verbal testing of intelligence, an early forerunner to Cummins’ threshold theory (Cummins, 
1976; Cummins 2000). The threshold theory suggests that bilingual children who have achieved a 
level of competence in both languages are afforded a cognitive advantage in all other areas of the 
curriculum. Conversely, children who have not reached a minimum standard of competence in both 
languages may experience negative cognitive and academic outcomes, with obvious implications for 
mathematics learning. While the threshold theory has been criticised for failing to clarify in concrete 
terms what these thresholds are (Chin & Wigglesworth, 2007), or for equating academic success 
with cognitive ability, without allowing for factors such as socio-economic status (MacSwan, 2000), 
evidence to support it has emerged from the US (Kessler & Quinn, 1982), Ireland (Ní Ríordáin  
& O’Donoghue, 2007), Malta (Farrell, 2011), and Papua New Guinea (Clarkson, 1992). 

This suggests that age-appropriate levels of language competence in both languages should be 
considered when forming assessment opinions of children’s achievements in mathematics. Educators 
carrying out assessment procedures such as interviews, observations or tasks in an immersion 
context have the dual purpose of assessing and evaluating both the mathematical competences and 
language competences of the child to gain a full picture. Dual language assessment (Murphy & 
Travers, 2012) is particularly important in this context, though it should be recognised that this adds 
to the complexities of the process, and to the demands on the child. When developing assessment 
materials or guidelines in a dual language context, care needs to be taken to ensure that tasks or 
questions on both language forms are developed collaboratively by translation and education 
experts to ensure their validity in both languages and minimise the danger of dealing with 
unfamiliar vocabulary or language constructions in either language, which would hinder the 
expression of mathematical knowledge or thinking on the part of the child (Rogers, Lin & Rinaldi, 
2011). It might also be considered that difficulties that immersion children experience in 
mathematics may best be addressed not only by interventions aimed at supporting mathematical 
concept and skill acquisition, but also by interventions aimed at raising general language 
competence in both languages. 

Children with Special Needs 

The assessment of the mathematical and other abilities of children with special educational needs is 
complex. According to Snow and Van Hemel (2008): 
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 � It is important to use multiple sources of information in arriving at decisions about the needs of 
children with special education needs, as the performance and behaviour of children with special 
needs across settings and situations can be even more variable than those of typically developing 
children.

 � The variability in the performance of children with special needs across situations requires 
incorporating information from family members to obtain an accurate picture of the child’s 
capabilities.

 �  A key principle applicable to all children but of special relevance to children with special needs is 
the importance of providing them with multiple opportunities to demonstrate their competencies.

 � The setting for the assessment, the child’s relationship with the person conducting the 
assessment, the ability of the assessor to establish rapport, fatigue, hunger, interest level in the 
materials and numerous other factors could result in a significant underestimation of the child’s 
capabilities.

 � Many young children with special needs are not capable of complying with all of the demands of 
testing situations, arising from lack of language, poor motor skills, poor social skills, and lack of 
attention and other self-control behaviours. 

 � Assessment tools should have a low enough floor to capture the functioning of children who are 
at a level far below their age peers.

 � In assessing young children with special needs, it is important to consider the test’s assumptions 
about how learning and development occur in young children and whether these are congruent 
with how development occurs in the child being assessed.

Therefore, considerable care needs to be exercised in the use of formal approaches to assessment 
with young children with special needs. In such circumstances, appropriate formative assessment 
methods may present the best solution. In relation to this, Douglas et al. (2012) note that, on 
occasion, child-led assessment through conversation methods may be problematic. It has also been 
suggested that, for some children with special needs, attentiveness should also be a focus of 
assessment (e.g., Gersten et al., 2012), as these children may not have the attention required to 
concentrate on the task in hand. 

Conclusion

In relation to assessing and planning for progression in children’s mathematical development, a number 
of approaches were reviewed, including the use of formative, diagnostic and summative assessments. 
Formative assessment methods are seen as coherent with the image of children as active powerful 
learners who learn mathematics as they engage in everyday activity with parents/caregivers, peers and 
teachers. Screening and diagnostic approaches are seen as useful for recognising and supporting 
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children who are having difficulties with mathematics. Attention is drawn to the inappropriateness of 
standardised tests and their inability to adequately portray the mathematical learning and development 
of young children. 

The key messages in this chapter are as follows: 

 � Of the assessment approaches available, formative assessments offer most promise for 
generating a rich picture of young children’s mathematical learning. 

 � Strong conceptual frameworks, including a sound understanding of general developmental 
progressions (learning paths), are important for supporting teachers’ formative assessments. 
These determine what teachers recognise as significant learning, what they take note of and 
what aspects of children’s activity they give feedback on.

 � There is a range of methods (observation, tasks, interviews, conversations, pedagogical 
documentation) that can be used by educators to assess and document children’s mathematics 
learning and their growing identities as mathematicians. These methods are challenging to 
implement and require teachers to adopt particular, and for some, new, perspectives on 
mathematics, on mathematics learning and on assessment. Digital technologies offer particular 
potential in this regard.

 � Constructing assessments which enlist children’s agency (for example, selecting pieces for 
inclusion in a portfolio or choosing particular digital images to tell a learning story) has many 
benefits, not least of which are the inclusion of children’s perspectives on their learning and their 
assessments of their own learning. 

 � More structured teacher-initiated approaches and the use of assessment within a diagnostic 
framework may be required on some occasions, for example, when children are at risk of 
mathematical difficulties. 

 � The complex variety of language backgrounds of a significant minority of young children presents 
a challenge in the learning, teaching and assessment of mathematics. Children for whom the 
language of the home is different to that of the school need particular support in developing 
language in order to maximise their opportunities for mathematical development and their 
participation in assessment.

 � Educators carrying out assessment procedures such as interviews, observations or tasks in an 
immersion context have the task of assessing both the mathematical and language competencies 
of the child to gain a full picture of their development. Dual language assessment is particularly 
desirable in this context. This applies to both EAL and to Irish-medium settings. 
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In line with the inclusive nature of the perspective adopted in this report, it 
is important to reiterate the assumption that mathematics is relevant to all 
children and that each child has the right to access, participate in and 
benefit from enriching mathematical experiences. In discussing the literature 
and perspectives on children who experience difficulties learning 
mathematics, there can be a disproportionate emphasis on gaps and needs. 
However, we would preface this chapter by stressing that all children have 
strengths and preferences in relation to mathematics and that the goal is 
always to support the child through using these strengths and preferences. 
It is also important to understand what we do not know in relation to 
mathematical development and take the perspective that any perceived 
difficulties and delays are the responsibility of the teacher and school to 
address. The groups of individuals who often require particular attention in 
the teaching and learning of mathematics are ‘exceptional’ children (those 
with developmental disabilities or who are talented mathematically), 
children for whom English is not a native language or those living with 
disadvantage. In this chapter, an overview is given of the different ways 
exceptional children are grouped and how attention might be given to their 
particular needs. Some consideration is also given to addressing cultural 
diversity in mathematics learning. In essence, it is to be argued that 
mathematics teaching that is sensitive to and appreciative of individual  
and/or group variation is effective ‘mathematics for all’. 

Identification of Learning Difficulties in Mathematics

Butterworth (2005) claims that ‘specific disorders of numeracy are neither widely recognised nor 
well understood’ (p. 12). Attempts to categorise and label children experiencing low achievement/
learning difficulties in mathematics have been problematic. Such approaches underestimate the role 
of instruction and experience in the development of critical knowledge and skills. It often assumes 
that, because children are in the same class with the same teacher, this can be controlled for. 
However, a myriad of influences affects how children construct knowledge and interact and engage 
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with a teacher and their environment, or not. Also, it is very difficult to isolate the influence of 
inappropriate teaching or home and preschool experiences on low achievement in mathematics. 
Data on low achievement often do not distinguish between a delay, a temporary difficulty and more 
persistent long-term difficulties in the subject. Given this uncertainty, Dowker (2004) recommends 
that ‘ultimately, the criteria for describing children as having ‘mathematical difficulties’ must involve 
not only test scores, but the children’s educational and practical functioning in mathematics’ (p. i).

A response to the above uncertainty with definitions and criteria in the US has been the development 
of the Response to Intervention (RTI) initiative. This arises out of the importance of monitoring the 
effectiveness of mathematical teaching and learning prior to classification of a learning disability. 
The primary goal of RTI is the prevention of difficulties through tailored evidence-based interventions. 
A secondary goal is the use of the data on progress with the intervention for the referral and 
identification of students with specific learning disabilities. It is now part of the US federal law in 
this area. 

Exceptional Children

Kirk et al. (2012) define as ‘exceptional’ a child who differs from the ‘typical’ child in (i) mental 
characteristics, (ii) sensory abilities, (iii) communication abilities, (iv) behaviour and emotional 
development and/or (v) physical characteristics. The term includes both the child with developmental 
delays and the child with gifts and talents. In their view: 

Individuals with exceptionalities help us better understand human development. Variation is 
a natural part of human development; by studying and teaching children who are 
remarkably different from the norm, we learn about the many ways in which children 
develop and learn. Through this knowledge, we inform ourselves more thoroughly about the 
developmental processes of all children. (p. 3)

They remind us that the term ‘typical’ is problematic (that is, each of us differs from others in some 
regard) but, from an educational perspective, ‘exceptional’ usually suggests a learner for whom 
some modification has to be made to accommodate his or her individual needs. Notwithstanding 
this, there is broad consensus that ‘distinctive teaching approaches’ are not required for exceptional 
learners, although there is a need to address individual needs (e.g., Davis & Florian, 2004). 

Intellectual and Developmental Difficulties

In reviewing the literature, distinctions are made between children with specific difficulties in 
mathematics, and children with difficulties with components or sub-components of mathematics.  
In addition, children can have difficulties arising from or as a risk factor because of a disability, 
specific or general. 
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Specific Difficulties in Mathematics

Difficulties in learning mathematics have been recognised for at least a century (Siegler, 2007). 
Multidisciplinary research of the issues has increased in recent decades but it lags substantially 
behind the equivalent level of attention afforded to literacy difficulties. Likewise, the evidence base 
is not as strong as for reading. However, there is consensus that a significant number of children 
exhibit poor achievement in mathematics (Swanson, 2007).

In studying the nature of difficulties in mathematics, Dowker (2004) emphasises the crucial 
understanding that arithmetic is not a single entity but is made up of many components. By 
arithmetic ability is meant

knowledge of arithmetical facts; ability to carry out arithmetical procedures; understanding 
and using arithmetical principles such as commutativity and associativity; estimation; 
knowledge of mathematical knowledge; applying arithmetic to the solution of word problems 
and practical problems; etc. (p. ii)

Studies highlight that it is possible for children to show marked discrepancies between components 
of arithmetic. Dowker (2004) concludes that ‘children, with and without mathematical difficulties 
can indeed have strengths and weaknesses in almost any area of arithmetic’ (p. 5). Despite this 
variability, research has pinpointed some areas of mathematics that create more problems for 
children than others, though there is less agreement on the underlying mechanisms underpinning 
these patterns.

There is much written on the nature of the difficulties that children can have and comparisons with 
children without such difficulties. Siegler (2007) highlights a number of promising developments in 
the field regarding the structure of mathematical disabilities: Geary et al. (2007) highlight the role of 
three processes: working memory functioning, phonological processing and visuo-spatial thinking; 
Butterworth and Reigosa (2007), working from the perspective of neuro-imaging, which often 
shows different results to other approaches such as interviewing, suggest that domain-specific 
modular representations of number play a role, and that there is little evidence supporting the role 
of working memory. They suggest that children at risk of mathematical difficulties are slower at 
subitising (saying how many are in a small set without counting). An increasing number of 
researchers such as Jordan (2007), Barnes et al. (2007) and Bull (2007) emphasise the role of poor 
mastery of number facts and fact retrieval, poor number sense and weaknesses in conceptual 
understanding as underlying problems. In addition, researchers highlight social and emotional 
influences such as motivation and maths anxiety.
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Developmental Delay

Berch and Mazzocco (2007) make a distinction between children with developmental delay and 
those with a mathematical learning disability. Dowker (2004), in a review of the area, highlights that 

a significant number have relatively specific difficulties with mathematics. Such difficulties 
appear to be equally common in boys and girls, in contrast to language and literacy 
difficulties which are more common in boys. (p. i) 

This raises the question as to the differences between children with specific difficulties with 
mathematics and those with non-specific difficulties associated with low achievement in general. 
There has been inconsistency in the findings related to this question but more evidence is pointing 
to specific difficulties being milder than difficulties associated with low achievement in general. 

Children with certain disabilities can experience difficulties in mathematics. Research has 
highlighted, for example, difficulties for children with specific language impairment (Donlan, 2007); 
Turner and fragile X syndromes (Mazzocco et al., 2007); spina bifida (Barnes et al., 2007); attention 
deficit hyperactivity disorder (Zentall, 2007) and with brain injuries (Zamarian et al., 2007). 
Mathematical difficulties often co-occur with dyslexia and language difficulties (Dowker, 2004). 
While children with some forms of brain damage or genetic disorder can have disproportionate 
difficulties with number, on the whole, children with general learning disabilities display similar 
developmental profiles as peers of the same mental age (Dowker, 2004).

Porter (1999) makes the distinction between what children can do and what they understand. In a 
study comparing the performance of children with severe learning disabilities and nursery-school 
(i.e., preschool) children, Porter (1998) found no difference in performance on simple counting and 
error-detection tasks. However, there was a difference in the acquisition of counting skills. Porter 
outlines four profiles of performance: non-counters, acquirers, transitional, and error detectors. 
Mental age proved to be the best predictor of performance tested. The pattern of attainments of 
the children described as acquirers differed from that of preschoolers in that adherence to the 
one-to-one principle was easier than adherence to the stable-order principle for both small and 
large sets. The performance of the children suggested that it was necessary to learn the skills of 
counting prior to understanding what it means to count.

In a review of the literature on deaf children and mathematics learning, Nunes (2004) concludes with  
a hypothesis that ‘deafness is a risk factor for difficulties in learning mathematics rather than a cause’ 
(p. 151). In addition, findings suggesting that lack of informal mathematical experience may have a 
‘wide-ranging effect on deaf children’s logical and mathematical development’ (p. 155) are presented. 
In experiments in problem-solving, Nunes found ‘that there is a gap between hearing and deaf 
children’s use of actions to solve problems and that this gap is often more severe when the actions 
have to be coordinated with counting’ (p. 154). Marschark and Spencer (2009) conclude that:
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Delays in language development, a relative lack of exposure (incidentally and in classrooms) 
to life-based problem-solving activities, and frequently inadequate pre-service teacher 
preparation in mathematics are believed to lead to the overall delay in development of 
maths concepts and skills by students with hearing loss. Below-age language skills limit 
access to teacher-provided as well as text-based explanations and most deaf and  
hard-of-hearing students lack age-appropriate command of technical vocabulary in 
mathematics. (pp. 139–140)

Mathematically Talented Children

In TIMSS 2011 mathematics, in which fourth class children in over 50 countries participated, the 
percentage in Ireland reaching the Advanced International Benchmark, while twice the 
international median, was well below the percentages in the top three performing countries 
(Singapore, the Republic of Korea, and Hong Kong), and also well below the percentages for 
Northern Ireland and England (Eivers & Clerkin, 2012). This suggests that many children in Ireland 
may not reach their potential in mathematics, compared with their counterparts in high-scoring 
countries. There is broad consensus that, internationally, the needs of children who are advanced 
(talented) in mathematics are not met (Diezmann et al., 2004). For this reason, these children 
‘underachieve’ and are at risk of becoming quietly disaffected from mathematics in future years 
(Nardi & Steward, 2003). Such children may, however, be quite advanced in different mathematical 
domains, e.g., in a capacity to reason analytically or spatially (or perhaps both), and teachers need 
to be sensitive to the varying needs of these children (Diezmann & Watters, 2002). In particular, 
the needs of these children can be met by the provision of challenging tasks that have scope for 
learning and the use of metacognitive skills (ibid). However, this is not a case for ‘streaming’ or for 
a differentiated curriculum. Rather tasks can be created that allow all children some form of 
success. In this regard, Sohmer et al. (2009) speak of tasks with ‘high-level cognitive demands’. 
Such tasks are characterised by ‘multiple entry points, solution strategies and interpretive claims’ 
(p. 112) and allow different students to access them in a variety of ways. Fiore (2012) refers to 
these tasks as ‘tiered assignments’:

The idea behind tiered assignments is to provide students with parallel tasks that have 
different levels of depth, complexity, and abstractness, as well as different support elements 
or explicit guidance. All students work toward the same goal or outcome, and the 
differentiated tasks allow students to build on their prior knowledge and strengths while 
their work on the tasks provides them with appropriate challenges. (p. 143)

In redeveloping the mathematics curriculum for 3- to 8-year-olds, consideration needs to be given to 
the design and development of such tasks. 
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Cultural Variation

Wright (1994) describes a 3-year difference in the numerical knowledge of children as they begin 
primary school. Some 4-year-olds have attained a knowledge of number that some of their peers 
will not attain until they are 7 years old. Griffin et al. (1994), using a standardised test of children’s 
conceptual knowledge, also found a 3-year gap in performance among 5- to 6-year-olds, with 
children from low-income communities performing like middle-income 3- to 4-year-olds. Without 
any intervention, such gaps widen throughout primary school. The Cockcroft report (1982) found 
that in a class of 11-year-olds, there is generally likely to be a 7-year range in arithmetical ability. 

The general view espoused in this report that a teaching approach that is linked to meaningful 
cultural referents and that assumes that all children have the capacity to engage successfully in 
mathematics is an effective approach for all children regardless of their gender, ethnicity or social 
class (e.g., Ladson-Billings, 1995). It is also assumed that individual variation is the norm and not 
the exception (Fiore, 2012). 

Ethnicity

In the 2009 National Assessments of Mathematics and English (Eivers et al., 2010), one of the 
factors associated with lower child achievement (in both English and mathematics) was that of 
speaking a first language other than English or Irish. Indeed, children are often perceived to be 
experiencing difficulty in mathematics on the basis of their relatively poor performance in 
achievement tests. However, such comparisons – while perhaps useful in terms of highlighting 
disparities – focus on access and achievement from a dominant perspective (generally white, 
middle-class students) and thereby preserve the status quo (Gutiérrez & Dixon-Román, 2011).  
A particular problem is that equity issues tend to be discussed from the perspective of group 
differences. Secada (1995) puts it like this:

[T]he search for group differences grants legitimacy to the view that diverse student 
populations are somehow deficient, exotic, or primitive when measured against the 
dominant norm. However, if all one can write or speak about is how a specific group is 
different from the norm, then the results are an impoverished view of that group and the 
validation of the belief that equity groups are somewhat inferior. (p. 153)

Fiore (2012) exhorts the need for teachers to be ‘culturally responsive’ and decries the effect of test 
scores on such practices:

In an ideal situation, culturally responsive teachers, curricula, and assessments would 
support children’s diversity, but the reality of pressures to produce evidence of annual yearly 
progress means that children’s learning styles, language, temperaments, and identities are 
viewed as potential obstacles to successful assessment scores and ratings. (p. 128)
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Dooley and Corcoran (2007) argue that, while distinctive teaching approaches for different groups 
can lead to a deficit view of mathematics learning, the notion of ‘one curriculum for all’ might also 
perpetuate inequalities. Malloy (1999) proposes that pedagogy, not content, must become multicultural. 
This means valuing the many ways that children make sense of mathematics. Some means by which 
this might be achieved by teachers include ensuring that connections between new and old ideas 
are evident to the learner, using problem contexts that are meaningful to the child, and focusing on 
the child’s intuitive representations and informal procedures (Carey et al., 1995). This idea of a 
multicultural pedagogy receives further attention in Report No. 18 (Chapter 4, Section: Children in 
Culturally Diverse Contexts).

Socioeconomic Disadvantage

As noted in the introduction to this report, children in Ireland with low socioeconomic status 
perform less well, on average, than their more advantaged counterparts. Group differences are 
most notable among children attending schools in the urban dimension of the School Support 
Programme under DEIS, with average scores among children attending the most disadvantaged 
schools (those in urban DEIS Band 1) between three-fifths and four-fifths of a standard deviation 
below those of children in non-DEIS urban schools in the most recent national assessment  
(Eivers et al., 2010).

While the national assessments focus on the mathematical performance of children in second and 
sixth classes, international research indicates that the relationship between socioeconomic status 
(SES; usually defined in terms of parents’ income level and/or education) and mathematics 
performance manifests itself considerably earlier (NRC, 2009). Pre-verbal number sense, which 
involves the ability to discriminate between large arrays of various sizes, begins in early infancy and 
appears to be universal (Xu, Spelke & Goddard, 2005). Preschool and early school number sense, 
which involves an understanding of number words and symbols, is more heavily influenced by 
experience and instruction, and large differences in performance are evident by the time children 
enter preschool, on standardised tests and on measures such as determining set size, comparing 
sets, or carrying out calculations (Klibanoff et al., 2006). Early differences in mathematical 
performance between children in families described as middle- and low-SES emerge for spatial/
geometric understanding and measures as well as for number competencies (Clements, Sarama & 
Gerber, 2005). The importance of preschool number sense is underlined by strong correlations 
between measures of number sense at preschool level and success on mathematics later in 
childhood (e.g., Fuchs et al., 2007). Young children’s number skills can be measured using either 
verbal tasks (i.e., number tasks without objects) or non-verbal tasks (i.e., number tasks with 
objects). Children in disadvantaged circumstances often perform less well on the former and their 
growth rates in kindergarten and first grade tend to be lower, compared with number tasks in 
which objects are present. Differences have also been observed on the same number tasks when 
presented verbally and non-verbally, with performance among children identified as disadvantaged 
being lower in verbal contexts (Jordan et al., 2007). 
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However, there is also evidence that early knowledge of number words can assist young children  
on tasks that do not require verbal input, such as matching arrays of visual dots. In a study by 
Ehrlich et al. (2006), children (aged 2–3 years) identified as low-SES tended to do less well on such 
tasks, compared with children identified as middle-SES, though differences were eliminated if 
responses that were plus or minus 1 from the correct answer were accepted as correct. This research 
suggests that preschool children identified as low-SES have approximations of set sizes and number 
words, at a time when other children have achieved exact representations. 

The US NRC Report (NRC, 2009) suggests that early differences on mathematical tasks among 
children with differing backgrounds can arise for a number of reasons, including the amount of 
support for mathematics at home and language and contextual factors. Clements and Sarama 
(2008) also point out that preschool programmes in the US that serve the most disadvantaged 
children tend to provide fewer opportunities and support for mathematics development than 
programmes that support more advantaged children. Jordan and Levine (2009) take the view that 
weaknesses in number competence can be identified in early childhood and that most children 
(including the most disadvantaged) have the capacity to develop the number competence that lays 
the foundation for later learning. 

There is a broad range of factors that need to be considered in designing programmes to support 
the early mathematical development of less-advantaged children. These include

 � Parental beliefs and behaviours. Parents in general prioritise the development of early literacy 
and language skills and living skills over mathematical skills (Barbarin et al., 2008) and  
expect preschools to focus on language and literary skills rather than early number skills  
(Cannon & Ginsburg, 2008).

 � Nature of parent-child interactions. Even in studies in which parents involve their less- or 
more-advantaged children in informal mathematical activities such as talking about number, 
playing with puzzles and shapes, engaging in counting, and using number symbols to represent 
quantity, differences in mathematical performance between children with varying degrees of 
disadvantage can arise, suggesting subtle differences in the effectiveness of parents in differing 
contexts (Saxe et al., 1987).

 � Language. There is a wide variation in instances of mathematical language both in homes and in 
preschool settings (see Chapter 3, Section: Variation in Language Skills and Impact on 
Mathematics), which can impact on children’s developing mathematical competence in a range 
of areas, including number and spatial awareness.

 � Parent expectations. Studies show a tendency among parents to overestimate their children’s 
mathematical competence in aspects such as cardinality (Fluck, Linnell & Holgate, 2005). This may 
limit the frequency and intensity of mathematical activities involving young children and their parents.
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Differences that characterise the home and community backgrounds of children living in disadvantage 
underlines the importance of: (a) supporting parents of such children to enhance their children’s 
mathematical competence through engagement in and discussion on a range of mathematics-related 
activities; (b) ensuring that preschool programmes, as well as building on child-led play and naturally 
occurring opportunities, include a strong numeracy component that includes opportunities for 
children to engage in planned activities with varying degrees of structure that expose them to 
mathematical ideas; and (c) providing opportunities for children in home, preschool and primary 
school settings to engage in language interactions with adults about important mathematical ideas 
and symbols, whether during structured play or storytime. Although these activities are often 
recommended for all children, their frequency and intensity may need to be raised in contexts in 
which large numbers of children from disadvantaged backgrounds meet together. 

There is a range of intervention programmes in place in DEIS schools in Ireland for children who may 
be at risk of mathematical difficulties, including Mathematics Recovery (Mata), Ready, Set, Go 
Maths, and Maths for Fun. While these programmes incorporate many of the goals of effective early 
years interventions, we could not find any published evaluations of the effects of the programmes 
on young children’s mathematical development in the Irish context. It would seem important to 
monitor the effects of these programmes, and, in particular, the extent to which skills acquired 
through early intervention are maintained and extended once children exit from the programmes. 

Conclusion

Individual and/or group variation should be regarded as a strength of the educational system and 
the redeveloped mathematics curriculum needs to address learner variability. It is not that distinctive 
teaching approaches (or indeed distinctive curricula) are required but that mathematics teaching 
should address specific needs – including the needs of those who are exceptional because of a 
disability or talent, those who do not have English or Irish as a mother language or those coming 
from a disadvantaged background. The implications of this position are immense. In particular, there 
is a need to move away from over-reliance on data from group testing to inform policy and practice 
in the area and to supplement group data with other relevant assessment information. Furthermore, 
teachers need to be supported in the design, development and delivery of mathematics lessons that 
recognise and capitalise on learner variability. Some of the challenges inherent in this task are 
explored in Report No. 18 in the discussion on an equitable curriculum (see Chapter 4, Section: 
Children in Culturally Diverse Contexts). 
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The key messages arising from this chapter are as follows:

 � The groups of individuals that often require particular attention in the teaching and learning of 
mathematics are ‘exceptional’ children (those with developmental disabilities or who are 
especially talented at mathematics), children who speak a first language other than English/Irish 
at home, and children living in disadvantage. In addressing their individual needs, the use of 
multi-tiered tasks, in which different levels of challenge are incorporated, is advocated.

 � Mathematics ‘for all’ implies a pedagogy that is culturally sensitive and takes account of 
individuals’ ways of interpreting and making sense of mathematics. In particular, norms-based 
testing can disadvantage certain groups. A diverse range of assessment procedures is required to 
identify those who experience learning difficulties in mathematics.

 � Parents and educators need particular supports in constructing mathematically-interactive and 
rich environments for children aged 3–8 years. The intensity of the support will need to vary 
according to the needs of particular groups of children. 
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The purpose of this report is to inform the redevelopment of the 
mathematics curriculum for children aged 3–8. In addressing this we 
focused on research related to the mathematical education of children aged 
3–8 years. We drew on a broad range of relevant literature and research 
studies, particularly those published since the introduction of the current 
Primary School Mathematics Curriculum in 1999. In line with the research 
request, we focused on definitions of mathematics education, theoretical 
perspectives, the role of language and communication in learning 
mathematics, goals, stages of development, diversity and assessing and 
planning for progression. 

The implications for curriculum development presented here are based on a view of mathematics as 
useful and as a way of thinking, seeing and organising the world, as well as being aesthetic and 
worthy of pursuit in its own right (Zevenbergen, Dole, & Wright, 2004). They are based on a view of 
all children as problem-solvers who can make sense of the world using mathematics, who engage in 
the processes of mathematization, and who develop productive dispositions towards mathematics. 

Our implications are presented in a context in which there is a growing awareness of children’s early 
mathematical knowledge and how it can be developed. Other important contextual factors include 
the multicultural nature of children’s learning environments, the ever-growing presence of 
technology in all aspects of children’s lives, concerns about children’s mathematical achievements 
and attitudes, and an economy in which mathematical knowledge is increasingly valued. 

The key implications arising from this review of research presented in this report are as follows: 

 � In the curriculum, a view of all children as having the capacity to engage with deep and 
challenging mathematical ideas and processes from birth should be presented. From this 
perspective, and in order to address on-going concerns about mathematics at school level, a 
curriculum for 3–8 year-old children is critical. This curriculum needs to take account of the 
different educational settings that children experience during these years. 

 � The curriculum should be developed on the basis of conversations amongst all educators, 
including those involved in the NCCA’s consultative structures and processes, about the nature of 
mathematics and what it means for young children to engage in doing mathematics. These 
conversations should be informed by current research, as synthesised in this report and in Report 
No. 18, which presents a view of mathematics as a human activity that develops in response to 
everyday problems. 
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 � The overall aim of the curriculum should be the development of mathematical proficiency 
(conceptual understanding, procedural fluency, strategic competence, adaptive reasoning, and 
productive disposition). As mathematization plays a central role in developing proficiency, the 
processes of mathematization should permeate all learning and teaching activities. These include 
connecting, communicating, reasoning, argumentation, justifying, representing, problem-solving 
and generalising.

 � The curriculum should foreground mathematics learning and development as being dependent 
on children’s active participation in social and cultural experiences, while also recognising the 
role of internal processes. This perspective on learning provides a powerful theoretical 
framework for mathematics education for young children. Such a framework requires careful 
explication in the curriculum, and its implications for pedagogy should be clearly communicated.

 � In line with the theoretical framework underpinning the curriculum, mathematical discourse 
(math talk) should be integral to the learning and teaching process. The curriculum should also 
promote the development of children’s mathematical language in learning situations where 
mathematics development may not be the primary goal. Particular recognition should be given to 
providing intensive language support, including mathematical language, to children at risk of 
mathematical difficulties. 

 � The goal statements of the curriculum should be aligned with its underlying theory. An approach 
whereby processes are foregrounded but content areas are also specified is consistent with a 
participatory approach to mathematics learning and development. In the curriculum, general 
goals need to be broken down for planning, teaching and assessment purposes. Critical ideas 
indicating the shifts in mathematical reasoning required for the development of key concepts 
should be identified. 

 � Based on the research which indicates that teachers’ understanding of developmental 
progressions (learning paths) can help them with planning, educators should have access to 
information on general learning paths for the different domains. Any specification of learning 
paths should be consistent with sociocultural perspectives, which recognise the paths as 
provisional, non-linear, not age-related and strongly connected to children’s engagement in 
mathematically-rich activity. Account needs to be taken of this in curriculum materials. Particular 
attention should be given to the provision of examples of practice, which can facilitate children’s 
progression in mathematical thinking.

 � The curriculum should foreground formative assessment as the main approach for assessing 
young children’s mathematical learning, with particular emphasis on children’s exercise of agency 
and their growing identities as mathematicians. Digital technologies offer particular potential in 
relation to these aspects of development. The appropriate use of screening/diagnostic tests 
should be emphasised as should the limitations of the use of standardised tests with children in 
the age range 3–8 years. The curriculum should recognise the complex variety of language 
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backgrounds of a significant minority of young children and should seek to maximise their 
meaningful participation in assessment. 

 � A key tenet of the curriculum should be the principle of ‘mathematics for all’. Central to this is the 
vision of a multicultural curriculum which values the many ways in which children make sense of 
mathematics. While there are some groups or individuals who need particular supports in order to 
enhance their engagement with mathematics, in general distinct curricula should not be advocated. 

 � Curriculum developments of the nature described above are strongly contingent on concomitant 
developments in pre-service and in-service education for educators at preschool and primary levels.
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Glossary

abstraction 

an idea based on experiences but independent of any one experience (NRC, 2001, p. 110); 
mathematics is about increasingly being able to deal with ideas rather than events. 

adaptive reasoning/expertise

the capacity for logical thought, reflection, explanation, and justification.

Big ideas 

the overarching concepts that are mathematically central and coherent, consistent with children’s 
thinking and generative of future learning (Clements and Sarama, 2007, p. 463); 

overarching concepts that connect numerous topics and applications (Baroody et al., 2006, p. 205).

Conceptual understanding

understanding of mathematical concepts, operations and relations.

Context 

an event, issue or situation derived from reality, which is meaningful to the children or which they 
can imagine and which leads to using mathematical methods from their own experience. It provides 
concrete meaning and support for the relevant mathematical relations or operations. Situations 
might be drawn from everyday experiences such as bus rides, or shopping, and handling money (van 
den Heuvel-Panhuizen 2008, p. 243); 

Culture

the totality of artefacts, rites, stories and customs shared in a given human social group  
(Ryan & Williams, 2007, p. 161).

Developmental progression

a sequence of levels of thinking (Clements and Sarama, 2007, p. 463).

Dynamic geometric software (Dgs) programs 

tools that can be used to construct and manipulate geometric objects and relations (e.g. Battista, 
1998). They help children to develop rich mental models which help them to reason in increasingly 
sophisticated ways (Battista, 2001).
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embodied cognition 

understanding situated in the body, in space and time, as well as socioculturally and historically 
(Ryan & Williams, 2007).

embodiment

an idea or abstraction expressed or represented physically or concretely (Ryan & Williams, 2007). 
For example, young children can explore number operations on a floor number line, by moving 
themselves forward and back on the line. They often communicate and articulate their 
understandings and ideas by using actions and gestures instead of/as well as words.

formal mathematical knowledge

knowledge that is school taught, largely represented in written form and frequently the result of 
deliberate efforts by children and teachers (Baroody et al., 2006, p. 189).

hypothetical learning trajectory (hlt)

instructional sequences or potential developmental paths that serve to focus educators’ attention on 
teaching children rather than on teaching a curriculum (Baroody et al., 2006, p. 206).

informal mathematical knowledge

knowledge gleaned from everyday activities in what are not normally considered instructional 
settings such as home, playground, grocery store, family car. Such knowledge is usually represented 
verbally or nonverbally and often learned incidentally (Baroody et al., 2006, p. 189).

iRf 

the teacher initiation–student response–teacher feedback (IRF sequence) is a form of classroom 
interaction commonly practiced in classroom discourse (Sinclair & Coulthard, 1975). The sequence is 
contrasted with a participation structure that allows for student-initiated negotiations.

learning trajectory

description of children’s thinking and learning of a specific mathematical domain and a conjectured 
route for that learning to follow through a set of instructional activities (Clements, 2008).
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mathematical model 

a bridge between informal understanding and the abstraction of formal ideas. A model can for 
instance include materials, visual sketches or symbols. The models are formulated by children 
themselves in the course of their engagement with a problem (van den Heuvel-Panhuizen, 2003).

mathematical processes

general mathematical processes such as problem-solving, reasoning and proof, communicating, 
connecting, and representing; justifying, argumentation; generalising;

mechanisms by which children can go back and forth between the abstract mathematics and real 
situations in the world around them (NRC, 2009, p. 43). 

mathematical proficiency

consists of the five intertwined and interrelated strands of conceptual understanding, procedural 
fluency, strategic competence, adaptive reasoning and productive disposition (NRC, 2001).

mathematizing 

the analysing of real-world problems in a mathematical way (Treffers & Beishuizen, 1999, p. 32);

casting children’s actions (work) into explicitly mathematical form (e.g. Ginsburg 2009b, p. 123); 

to conceive of problems in explicitly mathematical terms (Ginsburg 2009a, p. 412); 

formulating real situations in mathematical terms (NRC, 2009, p. 43; 354);

involves reinventing, re-describing, reorganising, quantifying, structuring, abstracting, generalising, 
and refining that which is first understood on an intuitive and informal level in the context of 
everyday activity (Clements, Sarama & DiBiase, 2004, p. 12);

…organising information into charts and tables, noticing and exploring patterns, putting forth 
explanations and conjectures, and trying to convince one another of their thinking  
(Fosnot & Dolk, 2001, pp. 4–5);

…more than process is happening. Children [can be] exploring ideas such as quantity and unitizing, 
and division, in relation to their own level of mathematical development. And mathematizing should 
not be dismissed as simply process. Mathematizing is content. (Fosnot & Dolk, 2001, p.9)

model context 

can stand for a whole range of related arithmetic situations in which the operations of addition, 
subtraction, multiplication and division are meaningfully reflected. It can provide support in enabling 
children to carry out a calculation or develop a procedure (van den Heuvel-Panhuizen, 2008, p. 91).
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modeling problems

can be contrasted with traditional ‘word’ problems since the information given is often in a form (for 
example, a table) that must be interpreted by the child. Problems revolve around authentic situations 
that need to be interpreted and described in mathematical ways. (English & Watters, 2004)

modelling 

a process through which children learn how to behave as mathematicians by imitating (modelling) 
the behaviour of others. Adults can teach children how to act mathematically by presenting them 
with examples of the dispositions, attitudes and values which the adults around them consider to be 
appropriate. Modelling occurs when children internalise these behaviours  
(Adapted from MacNaughton & Williams, 2004).

procedural fluency 

skill in carrying out procedures flexibly, accurately, efficiently and appropriately (NRC, 2001).

productive disposition

the habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a 
belief in diligence and in one’s own efficacy (NRC, 2001).

Reflective abstraction

for Piagetians, reflective abstraction is a key process for activating accommodation and assimilation, 
or restructuring one’s schema/models. This implies that children learn from talking about and 
reflecting on their mathematical ideas and solutions/strategies with others (Ryan & Williams, 2007, 
p. 158).

Rme

is an acronym for Realistic Mathematics Education – an approach to mathematics education devised 
by Freudenthal in the Netherlands in the 1970s (see Chapter 5).

Routine expertise

mastery of basic skill and other skills by rote (Baroody et al., 2006, p. 2001).

self-regulation

where the learner takes control and ownership of their own learning.
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specific language impairment (sli)

a language disorder that delays the mastery of language skills in children who have no hearing loss 
or other developmental delays. SLI is also called developmental language disorder, language delay, 
or developmental dysphasia. It is one of the most common childhood learning disabilities, affecting 
approximately 7 to 8 percent of children in kindergarten. The impact of SLI persists into adulthood. 
Definition taken from https://www.nidcd.nih.gov/health/voice/pages/specific-language-impairment.aspx

strategic competence

the ability to formulate, represent, and solve mathematical problems (NRC, 2001).

Working memory 

relates to the task at hand, and coordinates the recall of memories necessary to complete it. 

https://www.nidcd.nih.gov/health/voice/pages/specific-language-impairment.aspx
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